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Abstract— Transmission delay and packet dropout are
inevitable network-induced phenomena that severely com-
promise the control performance of network control sys-
tems. The real-time network traffic is a major dynamic
parameter that directly influences delay and reliability of
transmission channels, and thus, acts as an unavoidable
source of induced coupling among all network sharing sys-
tems. In this letter, we analyze the effects of traffic-induced
delay and dropout on the finite-horizon quality-of-control of
an individual stochastic linear time-invariant system, where
quality-of-control is measured by an expected quadratic
cost function. We model delay and dropout of the channel
as generic stochastic processes that are correlated with
the real-time network traffic induced by the rest of network
users. This approach provides a pathway to determine the
required networking capabilities to achieve a guaranteed
quality-of-control for systems operating over a shared-
traffic network. Numerical evaluations are performed using
realistic stochastic models for delay and dropout. As a
special case, we consider exponential distribution for delay
with its rate parameter being traffic-correlated, and traffic-
correlated Markov-based packet drop model.

Index Terms— Networked control systems, latency,
packet loss, network traffic, quality-of-control.

I. INTRODUCTION AND MOTIVATION

TRANSMISSION delay and packet dropout are two major
network-induced phenomena that affect the control per-

formance and may even lead to instability of networked control
systems (NCSs) [1]. For about two decades, a significant
attention has been given to analyze the effects of network-
induced phenomena on stability and quality-of-control (QoC)
characteristics of closed-loop network sharing systems [2].
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However, most of those works either study asymptotic be-
havior of closed-loop systems under specific delay and packet
loss scenarios, or consider stationary/independent delay and
packet loss processes [3]. The consideration of more practical
models of delay and packet loss wherein they are dynamically
correlated with channel traffic load has received little to none
attention in the context of NCSs. Moreover, from the QoC
perspective, characterizing the effects of realistic delay and
packet loss models on the finite horizon control performance
has a notable importance especially for the state-of-the-art and
time-sensitive applications of NCSs such as Industrial Internet-
of-Things and Industry 4.0 [4]. There are two major reasons to
study such problems: first, the novel concepts of IIoT and I4.0
require the control systems (e.g., industrial mobile robots) to
be adaptable w.r.t. the changing conditions of their assigned
tasks and resources [5], and secondly, the recent transform
of networking technology (e.g., 5G) to a user-oriented data
exchange medium has brought an extra dimension of decision-
making for control systems to determine the right service
characteristics needed to satisfy their expected QoC over
specific time frames. This means that the systems may need to
recompute their control and communication policies to satisfy
new QoC requirements. This entails that the control systems
predict and incorporate the effects of delay and packet loss
on their performance index to decide the required levels of
latency and reliability [6].

Motivated by the mentioned impacts, we focus in this letter
on two major contributions, first, proposing realistic models
of transmission delay and packet loss that are correlated with
the real-time network traffic, and second, characterizing the
effects of this traffic-correlated stochastic delay and packet loss
on the finite horizon QoC of individual closed-loop control
systems. We propose a generic packet loss framework and
a stochastic model of delay that encompasses a wide class
of distributions. Both models are correlated with the real-time
network traffic such that a higher traffic load results in a higher
probability of packet loss and longer delay. Furthermore,
our unified approach for incorporating delay and packet loss
handles the out-of-order arrival of measurements. We show
that the common models of stationary delay and Markovian
packet loss are special cases of our proposed traffic-dependant
delay and packet loss model. We study the effects of the
proposed traffic-dependent delay and packet loss processes on
the control performance of an arbitrary linear time-invariant
(LTI) control system that uses the shared network to close its
sensor-to-controller feedback loop. Contrary to some of the
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Fig. 1. Schematic of a networked control system operating over a traffic-
shared network under incoming real-time traffic with rate λ.

existing literature where the controller is imposed to be a zero-
order hold, we do not restrict ourselves to such impositions.
We then discuss the maximum delay and packet loss that can
be tolerated by the control system to satisfy a given QoC.

A. Related Works & Outline
Stability of NCSs under network-induced delay has been

widely investigated for both single-user and multi-user com-
munication channels, see [7]–[9] among many others. Stability
properties of NCSs under small (less than one sampling
period) and large (more than one sampling period) constant
network-induced delay are analyzed using a hybrid systems
technique in [7]. In [8], asymptotic and exponential stability of
closed-loop NCSs under time-varying but bounded delays are
studied by constructing a continuum of Lyapunov functions,
and the maximum allowable delay and transmission intervals
are derived to guarantee stability. In [9], stochastic stability of
jump-linear systems is discussed with an output feedback con-
troller affected by Markov-based delay. Different packet loss
models ranging from i.i.d. Bernoulli-based to Markov-based
scenarios are considered when addressing stability and control
performance of NCSs [10], [11]. Optimal QoC in NCSs over
finite time horizon and under network-induced parameters has
also been addressed mostly for bounded or small delays and
stationary erasure channels [12]–[14]. Similarly, over the infi-
nite horizon, optimal control performance is discussed mainly
with stationary delay processes and independent packet loss
models [15], [16]. To the best of our knowledge, however, a
general coupled delay and packet loss model that is in addition
statistically correlated with the real-time network traffic in the
context of NCSs is not studied in the literature. Quantifying the
effects of such traffic-correlated stochastic delays and dropouts
on the optimality of the finite horizon control performance is
the subject of this letter. Additionally, a succinct discussions
on the Pareto trade-off between delay and dropout parameters
to achieve a desired QoC is presented.

In the rest of this letter, Section II describes the NCS model.
The estimation and optimal control for general and particular
models of traffic-induced delay and packet loss are discussed
in Section III. Numerical results are reported in Section IV,
and the letter is concluded in Section V.

II. NETWORKED CONTROL SYSTEM MODEL

A. Control System Model
Consider an LTI NCS where the sensor-to-controller feed-

back loop is closed over a shared communication channel, as

depicted in Fig. 1. The dynamics of the closed-loop system
follows the discrete-time LTI stochastic difference equation as

Xt+1 = AXt +BUt +Wt, (1)

where the state Xt ∈ Rn, and the control input Ut ∈ Rm.
The process noise {Wt}t∈N0

is an independent sequence of
zero-mean Gaussian random variables with Wt ∼ N (0,Wt)
for some covariance matrix Wt � 0. The initial state X0 ∼
N (0,W−1) is also Gaussian and independent of the noise
sequence {Wt}t∈N0 . The QoC objective of the closed-loop
system is to minimize the following finite horizon LQG cost

J = E
[ T−1∑
t=0

(‖Xt‖2Q + ‖Ut‖2R) + ‖XT ‖2QT

]
, (2)

where Q,QT � 0, R � 0, and for any two matrices M and
N with compatible dimensions, we define ‖N‖2M , N TMN .

We assume that the controller and the actuator are collo-
cated. The scenario where the controller-to-actuator loop is
also closed over a traffic-shared channel can be studied with
a suitable modification of this framework. The network traffic
injected by other users affects the performance of system (1)
by degrading the delay and packet dropout probabilities.

B. Shared Channel Model
The control system (1) closes its sensor-to-controller link

over a traffic-shared resource-limited network, where the sys-
tem has no control over the injected traffic. Traditionally,
the network provides a queuing based service to its users.
Hence, whenever there is not enough transmission resources,
data packets are stored and scheduled for transmission at
a later time. This leads to induced delay which is directly
correlated to the network traffic. Furthermore, depending on
the queuing model and channel conditions and resources,
transmitted packets are subject to dropouts, and such dropouts
generally worsens with higher network traffic load.

Let the delay experienced by a packet transmitted at time t
be denoted by dt ∈ R+. The delay is a continuous random
variable with a probability measure P, which is correlated
with the network traffic. We model the NCS operations (e.g.,
sensing, decision-making, actuation etc.) in a discrete-time
manner, and hence, a data packet belonging to time t arriving
at time t + dt can only be used for computing the control
at the next discrete time instance. Therefore, for the purpose
of controlling the discrete-time model (1), we are interested
in the probabilities P(d − 1 ≤ dt < d) for d ∈ N that
characterize the discrete-time delays at the controller. With a
slight abuse of notation, in subsequent analysis we will simply
write P(dt = d) to denote P(d−1 ≤ dt < d) for d∈D, where
D ⊆ N denotes the sample space of the discrete delay random
variables. For the simplicity of this exposition, we will assume
that dt and ds are independent for all t 6= s. Such temporal
independencies are aligned with the work [17] and discussed
experimentally in [18]. The analysis can also be carried out
for a more generic delay distributions in a similar manner.

Let at time t the packet delivery/dropout be denoted by
a binary-valued random variable µt, and the packet dropout
probability by γt ∈ [0, 1], i.e., P(µt = 0) = γt. If the packet is
not dropped (i.e., µt = 1), the probability that it experiences



d ∈ D delay is denoted as pt(d) , P(dt = d | µt = 1). When
the packet is dropped, it is equivalent to an infinite delay, and
hence, P(dt = d | µt = 0) = 0, ∀t ∈ N0 and ∀d ∈ D. Thus,
we write the coupled delay and packet loss model as

P(dt = d) = (1− γt)pt(d),
∑
d∈D

pt(d) = 1, ∀t ∈ N0, d ∈ D.

In a compact form, one may define the set D̄ = D ∪ {∞},
where an infinite delay d =∞ essentially denotes a dropout.
In the subsequent analysis we will use D̄ to compactly
represent both delay and dropout. To that end, for all t ∈ N0,

P(dt = d) =

{
qt(d) , (1− γt)pt(d), d ∈ D,
γt, d =∞.

(3)

Widely used models for delay and packet dropout (e.g.,
geometric delay and Markovian packet loss processes) are
accommodated in our model setup (see Section III-C).

III. OPTIMAL ESTIMATION AND CONTROL

A. Estimation under Stochastic Delays and Dropouts
To investigate the estimation process at the controller, we

construct the measurement set (information set) available to
the controller. Due to the random delays and packet dropouts,
not all transmitted packets prior to time t will be available
to the controller at time t. For all s ≤ t, let βs,t ∈ {0, 1}
denote whether the data packet pertaining to time s (i.e., Xs)
is available to the controller at time t. Furthermore, at any
time t, let the random variable τt denote the last time instance
for which a packet has arrived at the controller, i.e., τt ,
max{s | βs,t = 1}. We adopt the convention that τt , −1 if
and only if βs,t = 0 for all 0 ≤ s ≤ t. Therefore, for any t, the
event {τt = −1} denotes that none of the transmitted packets
has arrived at the controller by time t. The information set It
at the controller contains the state information that has arrived
up to time t, i.e., It = {Xs| βs,t = 1}. From the definition of
τt, the controller does not have any information regarding the
realization of the random variables {Wr}r≥τt since {Wr}r≥τt
is independent of the σ-field generated by {Xs}s≤τt . Thus, we
obtain E[Wr|It] = 0, ∀r ≥ τt.

It will be shown in Corollary 1 that the optimal controller
is Ut = −Lt E[Xt | It]. Therefore, the optimal estimator is
the conditional expectation E[Xt|It], which is expressed as

E[Xt | It] =E[At−τtXτt +

t−1∑
k=τt

At−k−1(BUk +Wk) | It]

=At−τtXτt +

t−1∑
k=τt

At−k−1BUk, (4)

where we have used the fact that Xτt and {Uk}t−1k=0 are It-
measurable, and E[Wk | It] = 0 for all k ≥ τt. The estimation
error, defined as ∆t,Xt − E[Xt|It], therefore becomes

∆t =

t−1∑
k=τt

At−k−1Wk. (5)

Note that the estimation error ∆t in (5) depends on the random
delay and dropout through the term τt. The distribution of the

random variable τt entirely depends on the distributions of the
delay and dropout. Next, we discuss the effects of delay and
dropout distributions on ∆t (or equivalently on τt).

From the definition of the random variable τt, we first
conclude that τt ≤ t, almost surely. Furthermore, the event
{τt = t} denotes that the delay dt experienced by the packet
transmitted at time t is 0, and hence P(τt = t) = P(dt = 0) =
qt(0). Similarly, the event τt = t − 1 denotes that the delay
dt−1 experienced by the packet sent at time t is at most 1 and
the delay dt experienced by the packet transmitted at time t
is at least 1, that is, {τt = t − 1} = {dt−1 ≤ 1} ∩ {dt ≥ 1}.
Consequently, based on the channel model from Section II-B,
we obtain that P(τt = t − 1) = P(dt ≥ 1)P(dt−1 ≤ 1) =
(1− qt(0))(qt−1(0) + qt−1(1)). In fact, one obtains

P(τt = t− k) =

[
k−1∏
i=0

(
1−

i∑
s=0

qt−i(s)

)] k∑
`=0

qt−k(`),

P(τt = −1) =
t∏
i=0

(
1−

i∑
s=0

qt−i(s)

)
.

(6)

As discussed in Section II-B, the distributions of delay and
packet dropout are directly affected by the network traffic,
which in turn affects the distribution of τt through the terms
q·(·) in the expression of P(τt) in (6). Thus, the impact
of network traffic on the estimation error ∆t appears via
the random variable τt. In the next section, we explicitly
study this impact and discuss the traffic-induced performance
degradation measured by the cost function (2).

B. Optimal Control Performance with Imperfect Channel

In this section, we characterize the optimal achievable cost
(2) for given distributions of delay and packet dropout. As
mentioned earlier in Section II-B, several distinct models for
network traffic have been discussed in the literature [19], and,
based on the network infrastructure, the effects of network
traffic on delay and packet loss can be different. For this
section, we consider fairly general distributions for the delay
and the dropouts to present our results. Later in Section III-
C, we consider particular models for the network traffic and
the induced delay and dropouts to discuss some special results
under those modelling considerations.

Before proceeding, let us introduce the Riccati equation
associated with a standard LQG problem (i.e., perfect channel
with no delay or dropout)

Pt = Q+ATPt+1A−Nt, PT = QT , (7a)
Nt = LT

t(R+BTPt+1B)Lt, (7b)

Lt = (R+BTPt+1B)−1BTPt+1A, (7c)

where Pt � 0, Nt � 0 and Lt are matrices with appropriate
dimensions and A,B,R,Q and QT are system parameters as
given in (1)-(2). Recall that the optimal LQG cost for an LTI
system (1)–(2) operating over a perfect channel (i.e., without
delay or packet loss) is

∑T
t=0 tr(PtWt−1), where Pt follows

the control Riccati equation (7), and the matrices W−1 and
Wt are the covariances of the initial state X0 and the noise
Wt, respectively. The next theorem provides the optimal cost



J∗ for the same system (1)–(2) using a shared network with
traffic-induced stochastic delay and packet dropouts.

Theorem 1. Consider an LTI stochastic control system (1)
that uses a traffic-shared communication network to close
its feedback loop. For any given distributions of delay and
dropout, the optimal achievable LQG cost, as defined in (2),
over a finite horizon [0, T ] is

J∗ =

T∑
t=0

tr(P̃tWt−1), (8)

where

P̃t = Pt + Υt−1, ∀t = 0, . . . , T − 1; P̃T = PT , (9a)

Υt =

T−1∑
k=t+1

πk,t(A
T)k−t−1NkA

k−t−1, (9b)

πt,k = P(τt ≤ k) =

t∏
i=k+1

(
1−

t−i∑
s=0

qi(s)

)
, (9c)

and Pt follows the Riccati equation given in (7).

Proof: Let the value function at time t associated with
the cost (2) be denoted as Vt, i.e.,

Vt(It) = min
{Uk}T−1

k=t

E
[ T−1∑
k=t

‖Xk‖2Q + ‖Uk‖2R + ‖XT ‖2QT

]
.

The first step in the proof is to verify that Vt(It) is of the
following decoupled form

Vt(It) = E[‖Xt‖2Pt
] + Ct(It), (10)

where Ct(It) is independent of the control strategy, while
it depends on the delay and packet dropout distributions.
The matrix Pt follows the standard Riccati equation (7). The
hypothesis on the structure of Vt trivially holds for time t = T
with CT (IT ) = 0. Using backward induction, we now show
that (10) holds for any time t. To that end, we assume that
the hypothesis holds for some time k + 1 and show that this
assumption leads to the fact that the hypothesis holds true for
time k as well. Using dynamic programming on Vk(Ik):

Vk(Ik) = min
Uk

E
[
‖Xk‖2Q + ‖Uk‖2R + Vk+1(Ik+1)

]
(#)
= min

Uk

E
[
‖Xk‖2Q+‖Uk‖2R+‖Xk+1‖2Pk+1

]
+Ck+1(Ik+1)

= min
Uk

E[‖Uk + LkXk‖2R+BTPk+1B
]

+ E[‖Xk‖2Pk
] + tr(Pk+1Wk) + Ck+1(Ik+1)

(†)
= E[‖Xk‖2Pk

] + Ck(Ik),

where (#) follows from the assumption that (10) is true
for time k + 1 and (†) follows from the fact that the
optimal It-measurable controller that minimizes E[‖Ut +
LtXt‖2R+BTPt+1B

] is Ut = −Lt E[Xt | It], and we define

Ct(It) = Ct+1(It+1) + tr(Pt+1Wt) + E[‖∆t‖2Nt
].

Based on the definition of Ct(It), we verify that Ct(It) does
not depend on the control law. Furthermore, the value function

Vt(It) is indeed of the form (10). Therefore, we may write

J∗ = V0(I0) = tr(P0W−1) + C0(I0)

=

T∑
t=0

tr(PtWt−1) +

T−1∑
t=0

E[‖∆t‖2Nt
].

(11)

Now, based on the expression of ∆t in (5), we obtain
E[‖∆t‖2Nt

| τt] =
∑t−1
k=τt

tr(‖At−k−1‖2Nt
Wk), and therefore,

we may write

E[‖∆t‖2Nt
] =

t−1∑
s=−1

t−1∑
k=s

tr(‖At−k−1‖2Nt
Wk)P(τt = s)

=

t−1∑
k=−1

tr(‖At−k−1‖2Nt
Wk)

k∑
s=−1

P(τt = s)

=

t−1∑
k=−1

πt,ktr(‖At−k−1‖2Nt
Wk), (12)

where πt,k is given in (9c). Furthermore, from (12), we obtain

T−1∑
t=0

E[‖∆t‖2Nt
] =

T−1∑
t=0

t−1∑
k=−1

πt,ktr(‖At−k−1‖2Nt
Wk)

=

T−2∑
k=−1

T−1∑
t=k+1

πt,ktr(‖At−k−1‖2Nt
Wk)

=

T−2∑
k=−1

tr(ΥkWk),

(13)

where Υk is defined in (9b). Finally, by combining (13) and
(11) and using (9a), we obtain

J∗ =

T∑
t=0

tr(PtWt−1) +

T−2∑
k=−1

tr(ΥkWk) =

T∑
t=0

tr(P̃tWt−1),

This completes the proof.
Theorem 1 not only provides the optimal performance but

also characterizes the optimal control law for the closed-
loop system. The optimal control law for this problem is of
certainty-equivalence type with the feedback gain Lt being the
same as the gain for the standard LQG problem. The effects of
the network imperfections are reflected only in the estimation
process. This is formally stated in the following corollary.

Corollary 1 (Certainty equivalence control law). The optimal
control law that minimizes the LQG cost defined in (2) is

Ut = −Lt E[Xt | It],

where the optimal gain Lt and the optimal estimator E[Xt | It]
are given in (7c) and (4), respectively.

Remark 1. The optimal achievable cost in Theorem 1 resem-
bles the optimal cost under a perfect communication channel
(i.e., no delay and dropouts). In case of perfect transmissions,
the optimal cost J∗ is

∑T
t=0 tr(PtWt−1), which, as expected,

is smaller than the cost in (8), since clearly Pt � P̃t, ∀t.

From the proof of Theorem 1, we notice that the degradation
in QoC (equivalently, the increase in the value of J∗) due to
delay and dropouts is completely characterized by the matrices



Υt = P̃t+1 −Pt+1, ∀t. We conclude this section with the
following remark that compares the performance of the closed-
loop control system with its open-loop counterpart.

Remark 2. The optimal cost for the NCS (1)–(2) operat-
ing in open-loop is

∑T
t=0 tr(ΨtWt−1), with Ψt = Q +

ATΨt+1A, and ΨT = QT . One may verify that Ψt − Pt =∑T−1
k=t (AT)k−tNkA

k−t � Υt−1. Furthermore, Υt−1 = Ψt −
Pt if and only if πk,t−1 = 1, ∀k ≥ t. Thus, Υt−1 = Ψt − Pt
for all t occurs if only if γt = 1, ∀t. This is intuitive because
γt = 1, ∀t declares that all the transmitted packets will be
dropped with probability one, and hence, the system operates
in open-loop at all times.

C. Traffic-induced Quality-of-Control: A Special Case
Now we further study the optimal cost J∗ by considering

particular models for the stochastic delay and dropout. We
consider a Poisson arrival process for the network traffic [19]
with parameter λ. The discrete delay1 induced by this network
traffic is modeled by a geometric distribution with parameter
p(λ) ∈ (0, 1), i.e., P(dt = d | µt = 1) = p(λ)(1 − p(λ))d.
We write p(λ) to declare that the delay distribution correlates
with real-time network traffic parameter λ. The exact relation
between p(λ) and λ depends on the network infrastructure and
available communication resource, however, p(·) is intuitively
assumed to be non-increasing, i.e., as network traffic increases,
a higher induced delay is more probable.

Packet dropouts are modelled according to the well-known
non-i.i.d. (Gilbert-Elliott type) Markovian model [20]. The i.i.d
packet drop model is a special case of this Markovian model.
The transition probabilities for packet dropouts are P(µt = 1 |
µt−1 = 1) = µ̄(λ), P(µt = 0 | µt−1 = 0) = µ(λ) and the
initial probability P(µ0 = 0) = γ0. Therefore, for any t,[

γt
1− γt

]
=

[
P(µt+1 = 0)
P(µt+1 = 1)

]
=

[
µ 1− µ̄

1− µ µ̄

]t
︸ ︷︷ ︸

M(λ)t

[
γ0

1− γ0

]
,

where M(λ) is the probability transition matrix.

Lemma 1. Under the described Poisson network traffic, geo-
metric delay, and Markovian packet dropout models, we have

πt,k =

t∏
s=k+1

(
γs(λ) + (1− γs(λ))(1− p(λ))t−s+1

)
.

Proof: The proof of this lemma follows from the
construction of the probabilities qt(d) = P(dt = d) defined
in (3) and using (6) to compute the final expression for πt,k.
A detailed derivation has been omitted due to page limitation.

IV. SIMULATION RESULTS

In this section, we simulate the performance of a control
system operating over a traffic-shared network. To obtain the

1As discussed in Section II-B, we are interested in discrete delays due to the
discrete-time nature of the dynamics (1). Following an exponential distribution
with parameter p for the delay (i.e., P(dt ∈ dx) = pe−pxdx ), its discrete-
time version, i.e., P(dt = d) , P(dt ∈ [dδ, (d+ 1)δ)) follows a geometric
distribution with parameter 1− e−pδ , where δ denotes the sampling period.

Fig. 2. Optimal cost J∗ vs. the traffic arrival rate λ.

results we conduct several numerical simulations. We consider
A =

[
1.01 0.5
0.02 0.7

]
, B = I , Q = QT = R = 1

2I , T = 10 and

Wt = 1
4I , for all t. We gradually increase the network traffic

arrival rate and record the resulting QoC degradation.
Model 1: We consider the following models for p, µ̄ and µ:

p(λ) =
1

1 + λ
, µ̄(λ) = e−λ, µ(λ) = 0.7(1− e−λ).

The selected models above ensure that, when the traffic arrival
rate λ is low, the probability of a higher delay decreases,
and packet drop becomes an unlikely event. We notice that
p(λ) → 0 when λ → ∞, which implies that packets will
experience an infinite delay as traffic rate goes to infinity,
and consequently, the system operates in open-loop. This
is intuitive when operating over a network where jamming
happens due to unusually high arrival of other traffic.
Model 2: The next models that we set for p, µ̄ and µ are

p(λ) = e−λ, µ̄(λ) =
1

1 + log(1 + λ)
, µ(λ) = 0.5(1− e−λ).

For both sets of models we consider γ0 = 0.5. In Fig. 2,
we plot J∗ over λ. As expected, we notice that the optimal
cost increases with the traffic rate λ. Another observation from
Fig. 2 is that, for the same NCS with the same traffic arrival
rate λ, different performances are obtained depending on the
chosen model for p, µ̄ and µ. Therefore, it brings out another
important aspect of this problem - the delay-dropout trade-off.

A. Discussions: Delay-dropout Trade-off

The effects of network traffic on the delay and dropouts are
coupled and network infrastructure dependent. Based on the
available resources and the network technology, it is possible
to trade a higher delay with a lower dropout probability (e.g.
implementing a longer queuing buffer and re-transmissions of
previously dropped packets) and vice-versa for a given traffic
rate. That is, for the same traffic distribution parameter λ,
the network may offer a variety of choices for the parameters
p(λ), µ̄(λ) and µ(λ) of the model discussed in Section III-
C. In this numerical experiment, we investigate the allowable
tolerances on delay and dropout probabilities for a given
QoC. In Fig. 3 (top), we plot the optimal cost J∗ versus
the variations in the two parameters p(λ) and µ̄(λ), while



Fig. 3. Top: Cost J∗ versus p and µ̄ with µ = 0.5 and γ0 = 0.5.
Bottom: The colored region on the (p, µ̄) plane shows the feasible
choices for p and µ̄ under the constraint J∗ ≤ 6. The interior of the
dashed ellipse illustrates C(λ), i.e., the set of attainable (p(λ), µ̄(λ))
pairs for a given traffic parameter λ. The red square denotes the optimal
J∗ when (p(λ), µ̄(λ)) ∈ C(λ).

fixing µ(λ) = 0.5 and γ0 = 0.5. We observe that for a given
value of J∗ (i.e., QoC), several combinations of p(λ) and µ̄(λ)
are feasible. We assume that for a given traffic arrival rate
λ, the parameters p(λ), µ̄(λ) and µ(λ) are constrained to be
{p(λ), µ̄(λ), µ(λ)} ∈ C(λ) ⊆ R3

+. Such constraints may arise,
for example, due to resource limitations. The network serving
the control system (1) might be interested in choosing the
parameters {p(λ), µ̄(λ), µ(λ)} ∈ C(λ), such that cost J∗ is
minimized, or J∗ ≤ c, for some given c. To better illustrate
this, we plot the feasible (p, µ̄) region for J∗ ≤ 6 in Fig. 3
(bottom) where we also plot a hypothetical constraint set C(λ)
to illustrate how C(λ) may affect the achievable optimal cost
J∗. The (red) square on the boundary of the set C(λ) denotes
the optimal choice for (p(λ), µ̄(λ)) that results the minimum
J∗. These preliminary results point toward a deeper connection
between the achievable QoC and the traffic-induced network
conditions for decentralized multi-agent NCSs, which is yet
to be explored.

V. CONCLUSION

In this letter, we investigate the effects of network-induced
latency and packet loss on the finite-horizon performance of
an LTI control system operating over a shared channel. Perfor-
mance of the control system is tied to the rest of network users
through the network traffic that influences the real-time delay
and packet loss realizations. To characterize this coupling, we
consider a generic joint model of delay and packet dropout
that is correlated with the network traffic. Characterizing the
effects of network-induced delay and packet dropout on the
LQG cost provides a crucial design contemplation for NCSs so

that, depending on the traffic state, an NCS can determine its
maximum tolerable combined network latency and reliability
to achieve a guaranteed QoC performance. Theorem 1 captures
the connection between network traffic and QoC and provides
comparisons with open-loop and closed-loop (under perfect
channel) operations. It also provides a formal framework to
study the delay-dropout trade-off for multi-system decentral-
ized NCSs, which is currently unexplored in the literature.
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[10] M. H. Mamduhi, D. Tolić, A. Molin, and S. Hirche, “Event-triggered
scheduling for stochastic multi-loop networked control systems with
packet dropouts,” in 53rd IEEE Conference on Decision and Control,
Los Angeles, USA, December 15–17, 2014, pp. 2776–2782.

[11] H. Yang, Y. Xu, and J. Zhang, “Event-driven control for networked
control systems with quantization and Markov packet losses,” IEEE
Trans. on Cybernetics, vol. 47, no. 8, pp. 2235–2243, 2017.

[12] M. Palmisano, M. Steinberger, and M. Horn, “Optimal finite-horizon
control for networked control systems in the presence of random delays
and packet losses,” IEEE Control Systems Letters, vol. 5, no. 1, pp.
271–276, 2021.

[13] D. Maity, M. H. Mamduhi, S. Hirche, K. H. Johansson, and J. S. Baras,
“Optimal LQG control under delay-dependent costly information,” IEEE
Control Systems Letters, vol. 3, no. 1, pp. 102–107, 2019.

[14] M. H. Mamduhi, D. Maity, S. Hirche, J. S. Baras, and K. H. Johansson,
“Delay-sensitive joint optimal control and resource management in
multi-loop networked control systems,” IEEE Transactions on Control
of Network Systems, 2021.

[15] L. Schenato, “Optimal estimation in networked control systems subject
to random delay and packet drop,” IEEE Trans. on Automatic Control,
vol. 53, no. 5, pp. 1311–1317, 2008.

[16] Y. Ouyang, S. M. Asghari, and A. Nayyar, “Optimal infinite horizon
decentralized networked controllers with unreliable communication,”
IEEE Trans. on Automatic Control, vol. 66, no. 4, pp. 1778–1785, 2021.

[17] J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Stochastic analysis
and control of real-time systems with random time delays,” Automatica,
vol. 34, no. 1, pp. 57–64, 1998.

[18] Y. Tsang, M. Coates, and R. D. Nowak, “Network delay tomography,”
IEEE Trans. on Signal Processing, vol. 51, no. 8, pp. 2125–2136, 2003.

[19] K. K. Leung, W. A. Massey, and W. Whitt, “Traffic models for
wireless communication networks,” IEEE Journal on Selected Areas in
Communications, vol. 12, no. 8, pp. 1353–1364, 1994.

[20] G. Haßlinger and O. Hohlfeld, “The Gilbert-Elliott model for
packet loss in real time services on the internet,” in 14th GI/ITG
Conference-Measurement, Modelling and Evalutation of Computer and
Communication Systems. VDE, 2008, pp. 1–15.


