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Abstract—We consider an event-triggered controller synthesis
problem to replace the continuous feedback policy with an
intermittent feedback policy for a non-deterministic linear system.
An event-triggered framework communicates the measurement
to the controller only at certain discrete time instances which
are generated by an event-generator. The objective of this work
is to synthesize an optimal-event generator and controller pair
such that the state trajectory of the event-triggered system
mimics that of the the feedback system with arbitrary precision.
The optimality is in the sense that the least number of state
measurements are sent to the controller in order to compute
the control signal. The results of this paper show that such
an optimal event-triggered controller retains the linear structure
when the continuous feedback controller is linear; and the optimal
event-generator follows a threshold based policy, where the event-
generator decides to send the state measurement to the controller
every time a certain signal exceeds that threshold. Finally, the
similar framework was extended for a controller synthesis of
infinite horizon. The structural properties of the optimal event-
triggered controller and event-generator remain unchanged when
extended to an infinite horizon.

I. INTRODUCTION

Consider the generic linear non-deterministic control system
evolving in Rn as given in (1).

ẋ = Ax+Bu+ d

x(0) = x0. (1)

where the initial condition x(0) is known and the non-
determinism arises due to the disturbance signal d(t). Given
a control law u(t) = K(t, x(t)), control of such a system
requires continuous reading of the sensor measurements, and
continuous transmission of the sensed measurements to the
controller. Thus, sensing, communication and computing are
integrated in an inseparable way. In a centralized system, the
performance depends on the continuity of the communication,
and computing the control signal accurately. In a distributed
system, although the controller is implemented distributively,
however, it also requires continuous interactions among the
subsystems. Sensing, communication and data handling are
indispensable parts for networked control systems. As a result,
their performance is generally determined by the available
resources to perform sensing, transmission, and computation.
Scarcity of such resources are the sources of performance
degradation for large and interconnected systems.

In the recent past, researchers have proposed novel tech-
niques to approximate the control law u = K(t, x(t)), for
system (1), in such a way that require only finite number
of transmission (i.e. discrete-time transmission) to overcome
the requirement of continuous sensing, continuous transmitting
and continuous computing [1] [2], [3]. Event-based control has
been proved to be remarkably effective in dealing with limited
resources such as transmission bandwidth, sensing energy and
computational resources. Clearly, such an approximate control
signal will only lead to a behavior of the state trajectory which
is approximate to the trajectory obtained from continuous
feedback. Such control scheme generally has two components:
the Controller and the Event-Generator. The event-generator
decides the discrete time instances when the state measurement
is to be transmitted, and the controller computes the control
signal based on the received measurements from the event-
generator.

A great deal of research has been performed in the last
few decades to improve such frameworks and extend them
to non-linear and stochastic systems. In [4], a comparison
between the performance of event-based control and periodic-
sampling based control has shown that under some conditions
the event based control performs better than periodic control. A
simple PID controller is proposed in [3] for event based control
which reduces large CPU computation at the cost of minor
control performance degradation. The supremacy of event-
based strategy over a periodic-sampling strategy is not only in
reducing the number of transmission when there is not much
variation in the measurements, but also in increased trans-
mission when there is rapid variation. In periodic sampling,
the challenge is to find the suitable period of transmission to
guarantee a certain level of performance. In the recent studies,
the foci mostly have been on finding a feasible controller and
a compatible event-generator that together can approximate
the continuous feedback trajectory with arbitrary precision.
The aim of this paper is to identify the optimal controller
and event-generator pair which minimizes the total number of
measurement transmissions, hence entailing minimal energy,
bandwidth and computation resources.

In event-based control, self-triggered control, or periodic
control, the controller being unable to access the continuous
state, it estimates the state and the estimated state is used to
produce the control input. Since the generated control input
is different from the actual (continuous) feedback input, the
response of the system is not as it would have been if there
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Fig. 1. Event based control loop with three subsystems: control input
generator, the plant and the event generator. The switched communication
link allows communication from E to C only in discrete-time manner.

were a continuous state feedback. Let the state of the contin-
uous feedback system be denoted as xc(t) and the state of the
event-based system as x(t). The signal e(t) = x(t) − xc(t)
denotes the deviation in trajectories for using the event-based
controller. For a given ε > 0, the aim is to find an event-
generator and a corresponding controller such that ‖e(t)‖ ≤ ε
for all t while the number of state measurement transmissions
is minimized. The framework of our work is similar to [5]
and [6], but none of them addresses the question of optimality
of the number of transmitted measurements. The framework
is schematically represented in Figure 1 where the event
generator (E) determines the triggering instances and conse-
quently sends the state information to the controller through the
switched communication link. The system is influenced by the
exogenous disturbance d(t). In [5], for a similar problem (with-
out the optimality criterion) it was assumed that the closed loop
plant dynamics with linear feedback is asymptotically stable
(i.e. A − BK is Hurwitz). In this work, no such assumption
is made. Similar to [5], we restrict ourselves to design event-
based controller to replace the continuous controller which are
linear feedback, i.e., K(t, x(t)) = K(t)x(t). If the system
is not asymptotically stable, the residual error, e(tk), after
the k-th triggering persists, and for unstable systems it might
increases exponentially. The proposed approach assures that
the control input can be designed (by introducing an ‘correc-
tive’ control component ψ(t)) in a way that can mitigate this
residual error.

The main contributions of this work are:
First, the optimal structure of the event-triggered controller

is derived and it is found to be only dependent on the latest
state information, and not on all the prior measurements. Thus,
the controller does not need any (extra) memory (except latest
measurement) to implement the control law. Further, it is
found that the optimal controller is linear with respect to the
latest state measurement. Moreover, we show uniqueness (and
existence) of such optimal controller.

Second, we show that the controllability of the system
is sufficient to ensure (by constructing additional corrective
control) that there exists a event-based controller and an event-
generator so that the norm of the error, ‖e(t)‖, can be bounded

by any given positive constant ε for all t. Thus, our approach is
applicable to those systems where the closed-loop system is not
Hurwitz; hence extending the applicability of event-triggered
controllers to the class of problems that are not readily handled
by existing techniques such as [5].

Third, we design our event-triggering mechanism that min-
imizes the total number of triggering under the worst case
disturbance (d(·)). It is shown by the study that such an event-
triggering mechanism has a threshold based policy. This policy
is found by solving a certain dynamic programming problem,
and the policy is unique. Such a triggering policy does not
exhibit Zeno behavior, i.e., inter-triggering duration has a finite
positive lower bound.

The rest of the paper is organized as follows: Section
I-A performs a comprehensive literature survey; Section III
formulates the general problem that will be addressed; Sec-
tion IV provides the optimal controller synthesis; Section V
describes the optimal event-triggering strategy; and Section VII
illustrates the framework with examples. Finally, we conclude
our work with a discussion in Section VIII.

A. Literature Review
Event based controller synthesis is a well studied topic in

control for more than a decade, and the literature is vast and
enriched with various aspects of event-based frameworks on
many systems. This section provides a brief and yet a concise
representation of the related works.

In present literature, various seemingly similar frameworks
have been studied to reduce the communication overhead e.g.
Event-Based control [7], self-triggered control [8], [9] and
periodic-time control [10], [11], [12]. The essence behind
these techniques is to transmit measurements at discrete time
instances rather than communicating continuously. Even com-
parisons among such methodologies have been performed to
judge the effectiveness, see for example [4], [7]. In the lit-
erature, asynchronous control [13], event-based sampling [1],
event-driven sampling [2], Lebesgue sampling [7], deadband
sampling [14] have been proposed to carry out the idea of
supplicating communication only when some event has been
occurred. In [15], the authors analyzed event-based control in
a stochastic setting. The works of [16], [17], and [18] took
a different approach while reducing the information content
rather than reducing the communication frequency. A state
feedback approach for an event based system is considered in
[5] where the feedback control is generated from another sys-
tem which is updated every time a trigger is introduced. Later
this framework was extended to consider the output feedback
scenario in [19]. Output feedback based decentralized event-
trigger control is also consider in [20] and [21]. [21] studies
the problem of multi-agent consensus in an output feedback
event-based framework. Event-based control for distributed
interconnected linear systems is proposed in [22] and [23].

In event-triggered framework, there are some works which
aim to directly optimize certain cost function rather than
penalizing the actual trajectory deviation. Such an event-based
control of the standard LQG problem in lossy channel is
studied in [24] and proposed a sub-optimal solution to it. An
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event triggered state estimation has been the focus of study in
[25]. For a scalar system a probabilistic triggering strategy is
studied in [26].

In parallel, event-based control for non-linear systems have
been explored in the recent past. Asymptotic stability of an
event-triggered non-linear system is studied in [27] with the
assumption of input-to-state stability (ISS). [28] studies a
real-time scheduling and stabilizing control task under event-
triggered framework. This work is extended for homogeneous
and polynomial nonlinear systems in [29]. A feedback lin-
earization based approach was taken in [30] to design an event-
based controller for nonlinear systems. The nonlinear counter-
part of [6] is investigated in [31] using a Lyapunov function
based approach. An Lyapunov function based approach was
also taken in [32] to study non-linear event based systems
under delay and packet drop-outs.

II. NOTATION

x(t): state of the event-triggered system at time t, xc(t):
state of the corresponding continuous feedback system at t,
e(t) = x(t)−xc(t): error in the state trajectory. d : R+ → Rn:
the exogenous disturbance, ti: the i-th triggering instance,
x(ti): value of the state at i-th triggering instance, θ(t):
the latest triggering instance before time t, N(t): number of
measurements sent until time t, I(t) = {x0}∪{x(ti)}N(t)

i=1 (or
{x0} ∪ {x(ti)}N(t)

i=1 ∪ {e(ti)}
N(t)
i=1 ): the information available

to controller at time t, K(t, I(t)): the generic structure of
the controller, C: event-triggered controller, E : event generator,
u(t): continuous feedback input, û(t): event-triggered (inter-
mittent feedback) input, J : cost function of total number of
transmissions, Φ(t, s), Φ̃(t, s): state transition matrices, ‖ · ‖:
a norm in Rn.

To maintain brevity, throughout the paper we will suppress
the argument(s) of the functions e.g. x(t) will be denoted as
x, d(t) as d etc.

III. PROBLEM FORMULATION

Let us consider the linear non-deterministic dynamics of a
system to be given by (2)

ẋ = Ax+Bu+ d (2)
x(0) = x0

where for all t, x(t) ∈ Rn is the state of the system and u(t)
is the control. d(t) is an n dimensional exogenous disturbance
to the system which is non-deterministic. We assume that d :
[0,∞)→ Rn is a Lebesgue integrable function in L1([0,∞))
and consequently (2) has a well defined solution for all t ≥ 0.
When restricting ourselves to a finite horizon, we will consider
d(·) ∈ L1([0, T ]). Some special remarks will be made when
d ∈ L∞([0, T ]) or d ∈ L∞([0,∞)) In what follows, we will
denote d(·) ∈ D where D = L1([0, T ]) for a finite horizon
problem and D = L1([0,∞]) for an infinite horizon problem.
Sometimes we will consider D = L∞([0, T ]) or L∞([0,∞])
for making certain remarks and D will be explicitly mentioned
whenever we do so.

Let us consider a feedback control u(t) = −Kx(t) that
has been designed to achieve some desirable behavior on the
trajectory x(·). In the absence of d, it is sufficient to know
only the initial state x0 to calculate u(t) for all t; however,
the presence of d makes it absolutely necessary to know x(t)
in order to calculate u(t) precisely.

The closed-loop continuous feedback system has the state
dynamics (3)

ẋc = Ãxc + d (3)

where Ã = A−BK.
The communication of the state measurement to the con-

troller is done in a discrete time manner and on demand. Due
to the availability of discrete measurements, {x(ti)}i∈N, as
opposed to continuous measurements {x(s)}s≥0, the compu-
tation of the control u(t) will not be accurate and hence the
trajectory x(·) will deviate from its desired trajectory xc(·).
In this work, our constraint on the controller C and event-
generator E is to ensure ‖x(t) − xc(t)‖ ≤ ε for all t and for
all realization of the disturbance d(·).

In this framework, since the communication is done in a
discrete time manner, the exact state of the system, x(t), is
available to the controller only at those time instances, ti. Let
at any time t, θ(t) denote the latest instance ( ti ≤ t) when the
state value (x(ti)) was communicated to the controller. θ(t) =
0 for all t < t1 where t1 is the first triggering instance. Thus,
θ(t) is a piecewise constant function and θ(t) ≤ t where the
equality holds at the triggering instances. Moreover, dθ(t)dt = 0
for all t 6= θ(t).

The objective is to design the control in a way such that
it does not require the continuous measurement of the state
of the system and, nonetheless, it drives the new system
to approximate the closed loop system (3) within the given
tolerance bound for any realization of the disturbance d. Let
û(t) = K(t, x0 ∪ {x(ti)}N(t)

i=1 ) where tN(t) = θ(t); N(t)
denotes the total number of measurements sent until time t.
The new system with û as control input has the dynamics

ẋ = Ax+Bû+ d (4)
x(0) = x0.

The deviation of x(t) from xc(t) will depend on the choice
of {ti}i∈N, N(t) and K(·, ·); and these are our optimization
variables. We divide these variables into two groups E =

{N(·), {ti}N(·)
i=1 }, and C = K(·, ·), where E will be referred as

the event-generator which will decide the sampling instances
{ti}N(t)

i=1 and send x(ti) to the controller; and C will be named
as the event-triggered controller which will generate the input
û(t) based on the measurements sent by E .

Formally, we define that the control input is given by

û(t) = K
(
t, I(t)

)
(5)

where from our previous discussion, I(t) = {x0} ∪
{x(ti)}N(t)

i=1 , and will be called as the information available
to C at time t. Later in Section IV, we will notice that for
systems where Ã is not Hurwitz, the controller (C) needs
more information than the state value x(ti) at the triggering
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instances to ensure ‖e‖ ≤ ε. In fact, we will notice that E needs
to send the pair (x(ti), e(ti)) to C at each triggering instance ti.
Therefore, in that case I(t) =

{
x0, {x(ti)}N(t)

i=1 , {e(ti)}
N(t)
i=1

}
.

The event-generator E is attached to the plant and makes its
decision at time t based on the information Ft = {x(s)}0≤s≤t.

It is straight forward to notice that, the more measurements
are acquired, the ‘closer’ x(t) will be to xc(t). For given T
and ε > 0, the requirement is to design (E , C) pair such that
supt∈[0,T ] ‖xc(t)− x(t)‖ ≤ ε for every realization of the dis-
turbance d(·) while minimizing the number of measurements
sent by E to C.

First, we will solve this problem for a finite horizon [0, T ]
and later we take T → ∞ to study the infinite horizon
behavior. Therefore, for a finite horizon [0, T ], formally:

Problem III.1. For any given ε > 0,

inf
E,C

sup
d(·)∈D

N(T ) (6)

s.t. sup
t∈[0,T ]

‖xc(t)− x(t)‖ ≤ ε ∀d(·) ∈ D. (7)

where the admissible policies for the controller are of the
form (5) and the admissible policies for the even-generator to
compute the triggering sequences {ti}N(t)

i=1 is such that N(t) <
+∞ for all t ∈ [0, T ].

For the infinite horizon case, we consider the following
problem (the formulation ensures the optimization problem
attains a finite value when there is a feasible event-based E
and C):

Problem III.2. For any given ε > 0, and some T < +∞

J∗T = inf
E,C

sup
d(·)∈D

N(T )∑
i=1

e−ti (8)

s.t. sup
t∈[0,T ]

‖xc(t)− x(t)‖ ≤ ε, ∀d(·) ∈ D. (9)

Let E∗T and C∗T be the solution of the finite horizon problem
with cost J∗T . Then for infinite horizon:

J∗∞ = lim sup
T→∞

J∗T , (10)

E∗∞ = lim sup
T→∞

E∗T , (11)

C∗∞ = lim sup
T→∞

C∗T . (12)

We would like to mention that lim supT→∞ E∗T or
lim supT→∞ C∗T is a slight abuse of notation. E∗T is character-
ized by a set that contains the triggering instances and C∗T is
characterized by the function K(t, I(t)). The lim sup is taken
over the set of triggering instances and the function K(·, ·).

We assume that problems III.1 and III.2 are feasible i.e. for
each problem there exists a pair (E , C) such that the problem
has a finite value at the optimum.

In event-triggered control, the design of E needs to satisfy
non-Zeno behavior, i.e., there should not be infinite number
of state transmission within any finite time interval. Note that
both the problem formulations exclude Zeno behavior: any E
with Zeno behavior will result in an infinite cost. However, for

the infinite horizon problem, countable number of triggerings
over the horizon [0,∞) are admissible as long as there is a
finite number of triggerings within any finite interval.

A. Assumptions
The following assumptions are carried out throughout the

paper:
(1) The communication link through which the event gen-

erator sends the information to the controller is delay-free,
noiseless, and no packets are dropped-out.

(2) The system parameters (A,B,K) are assumed to be time
invariant.

(3) The initial information to the controller is I(0) =
{x(0)}.

IV. OPTIMAL CONTROLLER SYNTHESIS

In this section, we devote our attention to the effects of the
controller C on the error signal e(t).

For simplicity, we restrict ourselves to the space of control
strategies which are dependent only on the latest measurement,
and affine functions of the latest measurement, i.e.

û(t) = K
(
t, I(t)

)
= L(t)x(θ(t)) + ψ(t) (13)

where L(t) and ψ(t) characterize K(t, ·), and ψ(t) does not
depend on x(θ(t)). Later we will remove this assumption and
consider a general controller as proposed in (5) and show that
the affinity assumption does not lose generality (see Theorem
IV.6).

Let us note that with the control given in (13), the state
dynamics evolve as

ẋ(t) = Ax(t) +BL(t)x(θ(t)) +Bψ(t) + d(t), (14)

and the error e = x− xc has the dynamics

ė(t) = Ãe(t) +BKx(t) +BL(t)x(θ(t)) +Bψ(t),

e(0) = 0.

Whenever the context is not ambiguous, we will suppress
the time argument of various functions to maintain brevity.

From (14), we can write:

x(t) = F (t)x(θ(t)) +

∫ t

θ(t)

Φ(t, s)(Bψ(s) + d(s))ds

where

F (t) = Φ(t, θ(t)) +

∫ t

θ(t)

Φ(t, s)BLds.

Φ(t, s) is the state transition matrix corresponding to drift
matrix A, i.e. ∂Φ(t,s)

∂t = AΦ(t, s) and Φ(s, s) = I for all s, t;
under of time-invariant assumption, Φ(t, s) = eA(t−s).

Thus,

ė = Ãe+B(KF + L)x(θ(t)) +Bφ+ d1,

where φ(t) = ψ(t) + K
∫ t
θ(t)

Φ(t, s)Bψ(s)ds and d1(t) =

BK
∫ t
θ(t)

Φ(t, s)d(s)ds.
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Solving the linear dynamics of e, we can write:

e(t) = Φ̃(t, θ(t))e(θ(t)) +

∫ t

θ(t)

Φ̃(t, s)d1(s)ds+ f(t)

where Φ̃(t, s) = eÃ(t−s). By using the fact that for all s ∈
[θ(t), t], θ(s) = θ(t), we obtain

f(t) =

∫ t

θ(t)

Φ̃(t, s)B
(
(KF (s) + L(s))x(θ(t)) + φ(s)

)
ds.

(15)

Thus,

‖e(t)‖ =‖Φ̃(t, θ(t))e(θ(t)) +

∫ t

θ(t)

Φ̃(t, s)d1(s)ds+ f(t)‖

=‖v1 + v2‖

where vector v1 = Φ̃(t, θ(t))e(θ(t)) + f(t) and v2 =∫ t
θ(t)

Φ̃(t, s)d1(s)ds. From triangle inequality, ‖v1 + v2‖ ≤
‖v1‖+‖v2‖. The equality holds if v1 and v2 are aligned. Note
that the vector v1 depends on the controller parameters and
the disturbance realization until the latest triggering instance
θ(t). v2 depends on the disturbance realization after time θ(t).
Since the disturbance could be any L1([0, T ]) function, one
can show that there exists a disturbance realization such that
v2 could be aligned with v1. Thus,

sup
d∈D
‖e(t)‖ = sup

d∈D
‖Φ̃(t, θ(t))e(θ(t)) + f(t)‖

+ sup
d∈D

∥∥∥∫ t

θ(t)

Φ̃(t, s)d1(s)ds
∥∥∥. (16)

In general one would obtain an inequality rather than the
equality in (16) when D is not L1([0, T ]) or L([0,∞)). A
similar analysis with modifications can be carried out when
one considers an inequality instead of equality in (16).

The controller C would aim to minimize the first term
supd∈D ‖Φ̃(t, θ(t))e(θ(t)) + f(t)‖ since the second term is
entirely characterized by the exogenous disturbance. However,
the value of e(θ(t)) is unknown1 to the controller based on
the information send by the event generator E .

Thus, in order to ensure ‖e(t)‖ ≤ ε, the best possible
strategy for C would be to minimize ‖f(t)‖ since,

sup
d∈D
‖Φ̃(t, θ(t))e(θ(t)) + f(t)‖

= sup
y∈Rn,‖y‖≤ε

‖Φ̃(t, θ(t))y + f(t)‖

= sup
y∈Rn,‖y‖≤ε

‖Φ̃(t, θ(t))y‖+ ‖f(t)‖

The first equality is due to the fact that e(θ) ∈ Rn is non-
deterministic due to d(·) but ‖e(t)‖ ≤ ε for all t. The second
equality is due to the fact that with I(t) = {x0}∪{x(ti)}N(t)

i=1 ,
f(t) does not depend on e(θ(t)).

Thus, in this case, the necessary and sufficient condition for

1since it requires knowledge of xc(t) which is unavailable as the continuous
feedback control is not implemented

an optimal f(·) is f(t) = 0 for all t. Since φ(s) does not
depend on x(θ(t)), then using (15), f(t) ≡ 0 is equivalent to:

KF (t) + L(t) = 0 (17a)
φ(t) = 0 (17b)

for all t. The following lemma characterizes the L(t) that is
able to satisfy (17).

Lemma IV.1. L(t) = −KΦ̃(t, θ(t)) satisfies KF (t)+L(t) =
0, where Φ̃(·, ·) is the state transition matrix corresponding to
the drift matrix Ã = A−BK.

Proof: Let us substitute L(t) = −KΦ̃(t, θ(t)) in the
expression on F (t):

F (t) = Φ(t, θ(t))−
∫ t

θ(t)

Φ(t, s)BKΦ̃(s, θ(t))ds

= Φ(t, θ(t)) +

∫ t

θ(t)

d

ds
(Φ(t, s)Φ̃(s, θ(t)))ds

= Φ̃(t, θ(t)).

Hence, KF (t) + L(t) = 0 for all t.
The following theorem characterizes the optimal controller

structure and its behavior:

Theorem IV.2. Under the event-triggering scheme where the
only information sent by E to C is the sampled state value
{x(ti)}i∈N at the instances {ti}i∈N, and C uses an affine
controller as given in (13), the optimal controller that ensures
supd(·)∈D supt∈[0,T ] ‖e(t)‖ ≤ ε has the following structure:

û(t) = −Kxd, (18)

where for all t ∈ [ti, ti+1)

ẋd = Ãxd,

xd(ti) = x(ti).

Proof: Since û(t) is of the form (13) and satisfies (17),
then ψ(·) ≡ 0 and IV.1 L(t) = −KΦ̃(t, θ(t)). Therefore, from
(13)

û(t) = −KΦ̃(t, θ(t))x (θ(t)) .

The theorem is proved by noting that xd(t) =
Φ̃(t, θ(t))x(θ(t)) and, at the triggering instances, θ(ti) = ti.

This structure for the controller, (18), was assumed without
justification for optimality in earlier works [5] and [6].

Remark IV.3. Comparing the dynamics of xc and xd, we
notice a ‘certainty-equivalence’ type property in the controller
structure, i.e., xd is an (worst case) estimate of xc and the
control û replaces xc(t) that estimate.

Therefore, using the optimal controller as described in
Theorem IV.2,

ė = Ãe+ d1. (19)

The stability and boundedness of e is totally determined by
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the matrix Ã and the disturbance d1 (or equivalently d), and not
by any parameter of the controller C and E . The vast majority
of the past work is based on the assumption that Ã is Hurwitz
and D ⊆ L∞([0, T ]). The assumption D ⊆ L∞([0, T ]) implies
‖d(t)‖ ≤ d̄ (for some d̄ ≥ 0); and consequently, ‖d1(t)‖ ≤
d̄‖BK‖

∫ t
θ(t)
‖Φ(t, s)‖ds.

Thus, it is trivially true that:

‖e(t)‖ ≤ sup
t
‖d1(t)‖

∫ t

0

Φ̃(t, s)ds ≤ β sup
t
‖d1(t)‖,

where β =
∫∞

0
Φ̃(t, s)ds < ∞ for Hurwitz Ã.

Maintaining an event-triggering scheme such that
supt ‖d1(t)‖ ≤ ε/β will ensure ‖e(t)‖ ≤ ε. By noticing
that ‖d1(t)‖ ≤ d̄‖BK‖

∫ t
θ(t)
‖Φ(t, s)‖ds, it is sufficient to

ensure
∫ t
θ(t)
‖Φ(t, s)‖ds ≤ ε/(βd̄‖BK‖). Therefore, under

the assumptions of bounded noise and Hurwitz closed-loop
system, the triggering instances can be computed offline by
solving

∫ t
θ(t)
‖Φ(t, s)‖ds ≤ ε/(βd̄‖BK‖). A event-triggered

control problem with these assumptions has been studied in
[5], and the conclusion was alike.

Now the question is what can be done when Ã is not
Hurwitz and/or D 6⊆ L∞([0, T ])? As it seems from the
dynamics of e(t), with Ã being not Hurwitz, the error e(t)
will grow exponentially and eventually cross the given bound
ε. Thus, in order to keep the error within any given bound ε,
what extra information does E have to transmit to C? One of
the main foci of this paper is in addressing these questions
which are presented in the subsequent sections. Moreover, we
are also interested in the minimal number of measurement
transmission.

To maintain the continuity of the analysis, let us assume
that E can also measure e(t) for all t, and at each triggering
instance ti, E sends the information (x(ti), e(ti)) to C. For
now, this is an assumption that E knows e(t) since in practice
E has only the knowledge of Ft ( Ft = {x(s)}0≤s≤t) and
‘somehow’ it has to compute e(t). Later in this paper we will
show how E can compute e(t) for all t.

At this point, we restrict ourselves (without loss of general-
ity, see Theorem IV.6 for the general result) to the controller
structures:

û(t) = L(t)x(θ(t)) + ψ(t, e(θ(t))). (20)

Using this control input, and after some simplifications

e(t) = g1(t, e(θ(t))) + g2(t, x(θ(t))) +

∫ t

θ(t)

Φ̃(t, s)d1(s)ds.

where for any q ∈ Rn

g1(t, q) = Φ̃(t, θ(t))q +

∫ t

θ(t)

Φ̃(t, s)Bφ(s, q).

φ(t, q) = ψ(t, q) +K
∫ t
θ(t)

Φ(t, s)Bψ(s, q)ds and

g2(t, q) =
[ ∫ t

θ(t)

Φ(t, s)(B(KF (s) + L(s)))ds
]
q.

By using similar optimality argument in deriving (17),
we aim to find a controller C such that g1(t, e(θ(t))) =
0 and g2(t, x(θ(t))) = 0 (or minimize ‖g1(t, e(θ(t)))‖,
‖g2(t, x(θ(t)))‖).

Notice that g2(t, x(θ(t))) can be made equal to 0 for all t,
if L(t) = −KΦ̃(t, θ(t)) as stated in Lemma IV.1.

From the expression of g1(t, q), for a fixed q ∈ Rn, one can
verify that:

ġ1(t, q) = Ãg1(t, q) +Bφ(t, q), (21)
g1(θ(t), q) = q.

Therefore, g1(t, q) has a linear dynamics where φ(t, q) is
acting as a control input to that system. Therefore making
g1(t, q) = 0 for all t, q, is equivalent of asking whether (A,B)
is a controllable pair. Since we have freedom in selecting
ψ(t, q), we can control the value of φ(t, q) by properly
selecting ψ(t, q). The following theorem formally states how
to bring g1(t, q) to 0 by proper choice of φ(t, q).

Theorem IV.4. If (A,B) is a controllable pair, then there
exists a φ(t, q) such that g1(t, q) = 0 for all t > θ(t).
Moreover, such a φ(t, q) is linear in q.

Proof: Controllability of (A,B) implies the controllability
of (Ã, B). For a controllable time invariant linear system, the
state is controllable to the zero state in arbitrarily small time.
Therefore, ∀q ∈ Rn and ∀δ > 0, ∃φ(·, q) : [θ(t), r] → Rm
such that for all r ≥ θ(t) + δ

Φ̃(r, θ(t))q +

∫ r

θ(t)

Φ̃(r, s)Bφ(s, q) = g1(r, q) = 0. (22)

Equation (22) ensures that such a φ(·, q) is of the form
φ(s, q) = γ(s)q for all s, q. One can verify that

γ(s) =


KΦ(s, θ(t))

(
I − a(s)W

)
−B′Φ(θ(t), s)′W

∀s ∈ [θ(t), θ(t) + δ]

0 s > θ(t) + δ

can ensure g1(r, q) is 0 for all r ≥ θ(t) + δ, where

a(s) =

∫ s

θ(t)

Φ(θ(t), σ)BB′Φ(θ(t), σ)′dσ,

W (δ) = [a
(
θ(t) + δ

)
]−1. (23)

Since δ can be made arbitrarily small, we can have
g1(t, q) = 0 for all t > θ(t).

Although, δ could be made arbitrarily small in Theorem
IV.4, we must note that the gain of the proposed controller
in Theorem IV.4 depends on W (δ). The eigenvalues of W (δ)
increases (arbitrary high) as δ → 0. Thus, from an implemen-
tation point of view, δ should have some finite positive value,
even though theoretically δ can be arbitrarily small.

As soon as we set δ to have some finite positive value, we
have to ensure within the period [ti, ti+δ) (ti is any triggering
instance) no triggering occurs. This could be trickier since we
need to ensure supt∈[ti,ti+δ] ‖e(t)‖ ≤ ε while d(t) can take
any realization within the period [ti, ti + δ). Thus it might
cause a Zeno effect in the triggering system. A more detailed
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discussion to tackle this implementation issue is presented in
Section VIII. For the analysis further, we will assume that δ
is chosen arbitrarily small.

Controller C has the freedom to select ψ(t, q) and not φ(t, q)
directly. Therefore, we need to ensure there exists a ψ(t, q) for
the proposed φ(t, q) in Theorem IV.4.

Proposition IV.5. For all t ∈ [θ(t), θ(t) + δ],

ψ(t, q) = (KΦ̃(t, θ(t))−B′Φ(θ(t), t)′W )q

and ψ(t, q) = KΦ̃(t, θ(t))q ∀t > θ(t) + δ achieves the φ(t, q)
in Theorem IV.4. Where W is defined in (23).

Proof: We start by using the definition of φ(t, q):

φ(t, q) = ψ(t, q) +K

∫ t

θ(t)

Φ(t, s)Bψ(s, q)ds,

and let us choose ψ(t, q) = KΦ̃(t, θ(t))q + ψ1(t, q). Thus,

φ(t, q) = KΦ(t, θ(t))q+ψ1(t, q)+K

∫ t

θ(t)

Φ(t, s)Bψ1(s, q)ds.

Let us now select,

ψ1(t, q) =

{
−B′Φ(θ(t), t)′Wq, θ(t) + δ ≥ t ≥ θ(t)
0 t > θ(t) + δ

Thus, one can verify that for all t ∈ [θ(t), θ(t) + δ],

φ(t, q) =KΦ(t, θ(t))q −B′Φ(θ(t), t)′Wq

−K
∫ t

θ(t)

Φ(t, s)BB′Φ(θ(t), s)′Wqds

=KΦ(t, θ(t)) (I − a(t)W ) q −B′Φ(θ(t), t)′Wq

=γ(t)q

Similarly, for t > θ(t) + δ,

φ(t, q) =K

(
Φ(t, θ(t))−

∫ θ(t)+δ

θ(t)

Φ(t, s)BB′Φ(θ(t), s)′dsW

)
q

=KΦ(t, θ(t)) (I − a(θ(t) + δ)W ) q = 0

as desired.
Therefore, the corrective control input can be expressed

compactly as

ψ(t, e(θ(t))) =KΦ̃(t, θ(t))e(θ(t))

− 1t≤θ(t)+δB
′Φ(θ(t), t)′We(θ(t))

where

1x≤y =

{
1 x ≤ y
0 x > y

is an indicator function.
Thus, under the assumption that (A,B) is controllable, we

have proved that for any t ≥ θ(t) + δ,

e(t) =

∫ t

θ(t)

Φ̃(t, s)d1(s)ds,

and since δ > 0 can be made arbitrarily small, we can conclude
that for all t > θ(t)

e(t) =

∫ t

θ(t)

Φ̃(t, s)d1(s)ds. (24)

In the analysis so far, we have restricted ourselves to
controller of the form:

K(t, I(t)) = L(t)x(θ(t)) +M(t)e(θ(t))

In the next theorem, we show that the optimal controller is
indeed of this form and the restriction does not lose generality.

Theorem IV.6. If (A,B) is a controllable pair
and the controller C has information I(t) =

(x0, {x(ti)}N(t)
i=1 , {e(ti)}

N(t)
i=1 ), then the optimal controller has

the following linear form:

û = L(t)x(θ(t)) +M(t)e(θ(t))

where L(t) = −KΦ̃(t, θ(t)), and M(t) = KΦ̃(t, θ(t)) −
1t≤θ(t)+δB

′Φ(θ(t), t)W (δ). W (δ) is defined in (23) ∀δ > 0.
Moreover by making δ arbitrarily small, e(t) can be con-

trolled to have the value:

e(t) =

∫ t

θ(t)

Φ̃(t, s)d1(s)ds.

for all t > θ(t).

Proof: The proof of this Theorem is presented in Ap-
pendix X-A.

As a remark from Theorem IV.6, we obtain that the evolution
of the error e(t) is reset at each triggering instance, irrespective
of whether Ã is Hurwitz or not. This is only done through the
appropriate construction of the corrective component (ψ) in the
control, and without this component e(t) will grow exponen-
tially when Ã is unstable and hence violate the requirement
‖e(t)‖ ≤ ε for any Zeno effect free triggering strategy.

At this point, we have shown that under the assumption
that E can transmit both x(θ(t)) and e(θ(t)), the controller C
can ensure that ∀t > θ(t), (24) holds. Therefore, the next
step would be to determine triggering instances ti (hence
characterizing θ(·)) such that ‖e(t)‖ ≤ ε is satisfied. Also,
we need to ensure that E can precisely calculate e(ti) at
each triggering instance so that it can communicate it to the
controller.

At this point, we focus on how E would precisely calculate
and send e(ti) to the controller at each triggering instance.
In practice, E has the knowledge Ft and calculation of e(t)
requires the knowledge of xc which is not available. From the
dynamics of x(t), if the controller’s parameters L and ψ in
(20) are known to E , then E can uniquely determine e(t) by
observing x(t) only. To see this, let us define a dummy state
xd(t) which follows the dynamics

ẋd = Axd +Bû,

xd(θ(t)) = x(θ(t)),

where û is the input generated by the optimal controller
K(t, I(t)). If E knows the structure of the controller, then E
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can compute xd precisely just by observing x(t). Now, if we
define a new variable ∆(t) = x(t)− xd(t), then ∆(t) follows
the dynamics:

∆̇ = A∆ + d(t) ∀t 6= θ(t)

∆(θ(t)) = 0.

From the definition of ∆, one can immediately verify that
BK∆(t) = d1(t). Thus, in order to know d1(t), E needs
to monitor x(t) and compute xd(t). We notice that due to
the third assumption that I(0) = {x(0)}, we have e(0) =
0. Hence, based on whether the corrective control ψ is used
or not, we either have e(t) =

∫ t
θ(t)

Φ̃(t, s)d1(s)ds or e(t) =∫ t
0

Φ̃(t, s)d1(s)ds due to (24) and (19) respectively. Therefore,
in either situation, e(t) can be calculated by the event-generator
E . Hence, even in the absence of xc(t), e(t) can be calculated
precisely only from the knowledge of x(t) and computing a
dummy state variable xd(t).

The structure of C is determined by the matrix function L(t)
and the vector function ψ(t). Fortunately, the optimal L(t) is
unique and can be computed offline. Therefore C does not
need to communicate this information to the event-generator.
Similarly, ψ has a structure that is uniquely determined by
the parameter δ. Therefore, the only information related to
C that E needs to know is the value of δ chosen by C. To
resolve this issue, in the same framework, E can prescribe
a δ(ti) for the controller send the augmented information
(x(ti), e(ti), δ(ti)) to C. Otherwise if C selects δ(ti) (for
equation (23)) after receiving (x(ti), e(ti)), then that value of
δ(ti) needs to be communicated to E ; and this requires a bi-
directional communication between the controller and event-
generator. Whichever of these two methods are adopted, our
next results are going to be invariant of this choice.

In the following analysis, without loss of generality we will
assume that δ(ti) is chosen arbitrarily small enough, either by
C or by E , at each triggering time ti such that ti+δ(ti) < ti+1.
Since the admissible triggering strategy has finite number of
triggerings in [0, T ], such a δ(ti) > 0 must exists for each ti.

Now that we have the optimal controller designed and event-
generator having the precise knowledge of e(t) for all t, we are
ready to study the optimal event-generating scheme by solving
Problem III.1.

V. OPTIMAL EVENT GENERATOR SYNTHESIS

In this section we will assume that the optimal C uses a
ψ(·) (or E prescribes a δ arbitrarily small) such that for all
t > θ(t), we have

e(t) =

∫ t

θ(t)

Φ̃(t, s)d1(s)ds.

Later we will remove that assumption that δ is arbitrarily small
and consider a δ which is finite and bounded from below (see
Section VIII).

Definition V.1. Two optimization problems are equivalent if
an optimal solution of one is an optimal solution for the other
and the corresponding optimal values are same for both the
problems.

Let us formulate an unconstrained optimization problem that
is equivalent to Problem III.1.

Problem V.2. For any given ε > 0, optimize the following:

inf
E,C
J1(C, E). (25)

J1(C, E) = sup
d(·)∈D

(N(T ) + sup
s∈[0,T ]

cε(‖e(s)‖)),

where

cε(x) =

{
0 x ≤ ε
+∞ x > ε.

Proposition V.3. Problem III.1 is equivalent to Problem V.2.

Proof: Note that the optimal C for both the problems will
be same as what discussed in Section IV. Therefore, we will
focus on synthesizing E only.

Let E1 be an optimal solution for Problem III.1. By finiteness
assumption, J(C, E1) is finite, and satisfies the constraint
sup[0,T ] ‖e(t)‖ ≤ ε. As a result, J1(C, E1) = J(C, E1).

Let us assume E2 be an optimal solution of Problem V.2,
then J1(C, E2) ≤ J1(C, E1) = J(C, E1). Since J1(C, E2)
is finite, it satisfies the constraint sup[0,T ] ‖e(t)‖ ≤ ε; and
therefore it is a feasible solution for Problem III.1, and further
J(C, E2) = J1(C, E2).

Thus, J(C, E2) = J1(C, E2) ≤ J(C, E1) ≤ J(C, E2). Hence
J(C, E1) = J(C, E2) = J1(C, E1) = J1(C, E2).

The construction of Problem V.2 is followed by the well-
known barrier function method in optimization [33], however,
we do not construct a barrier function which is smooth and
continuous such as log-barrier-functions. Instead of following
a gradient based optimization here on the unconstrained ob-
jective J1(C, E), we will adopt a dynamic programming based
approach, where the solution of the dynamic program will be
the time instances to trigger the events.

Let us define the set

S = {t1, · · · , tl | ∀i, ti < ti+1, t1 ≥ 0, tl < T, l ∈ N}.

S denotes the set of all possible event triggering strategies.
Analogous to S, let us also define

S(t) = {t1, · · · , tl | ∀i, ti < ti+1, t1 ≥ t, tl < T, l ∈ N}

which is the set of all feasible triggering instances after t.
Since minE,C J1(C, E) = minE J1(C∗, E) where C∗ is the

optimal controller discussed previously, we will suppress the
dependency of J1 (or J) on C∗ in the following analysis.

Let us denote the value function

V (t, e) = inf
E∈S(t),e(t)=e

sup
d(·)∈D

{|E|+ sup
s∈[t,T ]

cε(‖e(s)‖)}

V (T, e) = 0. (26)

By this definition, V (0, 0) will be the solution to Problem V.2.
Also note that ‖e(t)‖ = ‖e‖ > ε results in V (t, e) = +∞.

From the special structure of cε(·), we can
write sups∈[t,T ] c

ε(‖e(s)‖) = sups∈[t,r] c
ε(‖e(s)‖) +

sups∈[r,T ] c
ε(‖e(s)‖) for all r ∈ [t, T ].
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Let us assume ‖e(t)‖ ≤ ε and {t∗1, · · · , t∗k} ∈ S(t) be the
optimal triggering instances starting at time t. Therefore, by
optimality criterion,

V (t, e) = inf
t1≥t,e(t)=e

{1t1<T + sup
d(·)∈D

sup
s∈[t,t1]

cε(‖e(s)‖) (27)

+ V (t1, 0)}
=1t∗1<T + V (t∗1, 0).

One may verify that for all s > t,

V (t, 0) ≥ V (s, 0),

ensuring that V (·, 0) is a non-increasing function. Let us
define:

τ∗(t) = inf
s

{
T > s ≥ t | ‖e(s)‖ = ε

}
where in our convention inf over an empty set evaluates to be
+∞. Therefore, it must hold that t∗1 ≤ τ∗(t). Also, we have
for all r ≤ τ∗(t), V (r, 0) ≥ V (τ∗(t), 0). Thus, using r = t∗1
one can obtain

1t∗1<T + V (t∗1, 0) ≥ 1τ∗(t)<T + V (τ∗(t), 0). (28)

However, since t∗1 is optimal, then for all s ≥ t,

1t∗1<T + V (t∗1, 0) ≤ 1s<T + V (s, 0) + sup
d(·)∈D

sup
r∈[t,s]

cε(‖e(r)‖).

Substituting, s = τ∗(t),

1t∗1<T + V (t∗1, 0) ≤ 1τ∗(t)<T + V (τ∗(t), 0). (29)

Combining (28) and (29), we obtain

1t∗1<T + V (t∗1, 0) = 1τ∗(t)<T + V (τ∗(t), 0). (30)

Since the function 1·<T + V (·, 0) : R+ → R+ ∪ {+∞} is
non-increasing and t∗1 ≤ τ∗(t), the necessary and sufficient
condition for t∗1 to be optimal is t∗1 = τ∗(t).

Therefore,

V (t, e) =

{
1 + V (τ∗(t), 0) τ∗(t) < T

0 τ∗(t) = +∞

Thus, the triggering strategy is to wait until the error reaches
to the value ε and then trigger an event in order to ‘reset’ the
error. The event-triggering strategy is given in the following
Theorem:

Theorem V.4. If ti is the i-th triggering instance, then

ti+1 = inf
s

{
T > s > ti | ‖e(s)‖ = ε

}
(31)

t1 = inf
s

{
T > s > 0 | ‖e(s)‖ = ε

}
Proof: The proof follows directly from fact that at any

time t, the next triggering instance is given as:

τ∗(t) = inf
s

{
T > s ≥ t | ‖e(s)‖ = ε

}
.

Thus, t1 = infs

{
T > s ≥ 0 | ‖e(s)‖ = ε

}
, and at i-th

triggering instance (ti), the next triggering instance will be:

ti+1 = inf
s

{
T > s > ti | ‖e(s)‖ = ε

}
.

The event triggering mechanism (31) is well studied in
literature e.g. [5], [6], [31], and [22]. However, to the best
of our knowledge, none of the prior works formally studies
the optimality of such a strategy. In the following we show
that the event-triggering strategy is unique and well defined,
i.e., the strategy does not exhibit Zeno behavior.

Theorem V.5. The optimal triggering strategy (31) is unique.

Proof: Let E1 = {t11, t12, .., t1l1} and E2 = {t21, t22, .., t2l2}
be any two optimal solutions of the dynamic programming
equation (28). Then by (31), for all i = 2, 3, · · ·

t1i = inf
s∈(t1i−1,T )

{
s ≥ 0 | sup

(t1i−1,s]

‖e(r)‖ = ε
}
,

and supr∈(t1l1
,T ) ‖e(r)‖ < ε. Similarly,

t2i = inf
s∈(t2i−1,T )

{
s ≥ 0 | sup

(t2i−1,s]

‖e(r)‖ = ε
}
,

and supr∈(t1l1
,T ) ‖e(r)‖ < ε.

t11 = inf
s∈(0,T )

{
s ≥ 0 | sup

(0,s]

‖e(r)‖ = ε
}

= t21

Therefore by induction based argument, one can show that
t1i = t2i for all i and l1 = l2 = l.

Corollary V.6. The optimal cost J1(C∗, E∗) is finite iff there
is no Zeno effect in the event triggering mechanism.

Proof: First, let us assume that the optimal triggering
mechanism (E∗) is free of Zeno behavior. Therefore, for
the horizon [0, T ], there are only finite number of triggering
instance, say {t0, t1, · · · , tl}. From (31), within each interval
[0, t1], [t1, t2], · · · , [tl, T ], ‖e(t)‖ ≤ ε. Hence, J1(C∗, E∗) =
V (0, 0) = l < +∞.

Now, let us assume that J1(C∗, E∗) = J < +∞. Thus,
E∗ and C∗ ensure supd(·)∈D ‖e(t)‖ ≤ ε for all t ∈ [0, T ].
Therefore from Problem V.2, J = N(T ) = |E|. Thus there
are only finitely many triggering instances and hence, the
triggering mechanism does not exhibit Zeno behavior.

Furthermore, we claim that J1(C∗, E∗) is always finite, and
the finiteness of J1(C∗, E∗) is ensured by showing that there
exists a time interval of positive measure between any two
triggerings.

Theorem V.7. The inter-event times are bounded from below.

Proof: Let ti be a triggering instance when (x(ti), e(ti))
was sent to the controller. Thus, for all t > ti

e(t) =

∫ t

ti

Φ̃(t, s)d1(s)ds.
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If ti+1 is the next triggering instance, then

ε =
∥∥∥∫ ti+1

ti

Φ̃(ti+1, s)d1(s)ds
∥∥∥.

Using d1(t) = BK
∫ t
ti

Φ(t, s)d(s)ds,

ε =
∥∥∥∫ ti+1

ti

(Φ(ti+1, s)− Φ̃(ti+1, s))d(s)ds
∥∥∥.

Thus,

ε ≤ ∆(ti, ti+1)

where for all σ ≥ τ

∆(τ, σ) = sup
s∈[τ,σ]

‖(Φ(σ, s)− Φ̃(σ, s))‖
∫ σ

τ

‖d(s)‖ds.

Note that ∆(τ, τ) = 0; and ∆(·, ·) is an uniformly contin-
uous function. Thus for all ε > 0, ∃δ > 0 2, such that if
‖(τ1, σ1) − (τ2, σ2)‖ < δ, then ‖∆(τ1, σ1) −∆(τ2, σ2)‖ < ε
for all (τ1, σ1), (τ2, σ2) such that σi ≥ τi, i = 1, 2.

Using τ1 = τ2 = σ1 = ti, for all σ2 such that |σ2− ti| < δ,
‖∆(ti, σ2)‖ < ε

However, ε ≤ ∆(ti, ti+1). Thus, |ti+1 − ti| > δ. Therefore
for each triggering instance ti, the next triggering is atleast
after δ amount of time.

In Theorem V.7, the existence of the positive inter-
event duration depends on the fact that the functions
sups∈[τ,σ] ‖(Φ(σ, s) − Φ̃(σ, s))‖ and

∫ σ
τ
‖d(s)‖ds are uni-

formly continuous over the compact domain [0, T ] × [0, T ].
For an infinite horizon, we still need to show that ∃δ such
that for all i, |ti+1 − ti| > δ. In order to do so, we use
our initial assumption that the disturbance d(·) is Lebesgue
integrable. Thus,

∫∞
0
‖d(t)dt‖ = M < +∞, for some positive

M . Moreover, instead of taking T → +∞, we consider these
interval [αT, (α + 1)T ], where α ∈ R+, and let α vary to
span R+. Let, ti be the i-th triggering instance such that
αT ≤ ti < (α+1)T for some α. Thus, for (α+1)T > t > ti,

e(t) =

∫ t

ti

(Φ(t, s)− Φ̃(t, s))d(s)ds

‖e(t)‖ =
∥∥∥∫ t

ti

(Φ(t, s)− Φ̃(t, s))d(s)ds
∥∥∥

≤ sup
s∈[ti,t]

‖(Φ(t, s)− Φ̃(t, s))‖
∥∥∥∫ t

ti

d(s)ds
∥∥∥

≤M sup
s∈[ti,t]

‖(Φ(t, s)− Φ̃(t, s))‖

If we denote now ∆̄(τ, σ) = sups∈[τ,σ] ‖(Φ(σ, s)− Φ̃(σ, s))‖,
then one can verify that ∆̄(τ, σ) = ∆̄(τ + αT, σ + αT ) for
all α, T ∈ R. Clearly, ∆̄(τ, σ) is uniformly continuous in the
domain [0, T ]×[0, T ]; and thus it will be uniformly continuous
in any domain of the form [αT, (α+ 1)T ]× [αT, (α+ 1)T ].

Thus, if ti and ti+1 are two consecutive triggering instances,

2δ will depend on ε; it should be denote it by δ(ε)

within the interval [αT, (α+ 1)T ] for some α,

ε ≤M sup
s∈[ti−αT,ti+1−αT ]

‖(Φ(ti+1 − αT, s)− Φ̃(ti+1 − αT, s))‖

=∆̄(t̄i, t̄i+1),

where t̄i = ti − αT and t̄i+1 = ti+1 − αT ; thus 0 ≤ t̄i ≤
t̄i+1 ≤ T . Since ∆̄(τ, σ) is uniformly continuous in [0, T ] ×
[0, T ], there must exist a δ > 0 such that for all |ti − ti+1| =
|t̄i− t̄i+1| < δ, ∆̄(t̄i, t̄i+1) ≤ ε/M . Thus, inter-event times are
always δ apart for an infinite horizon problem. This is provided
as a remark below.

Remark V.8. For finite and infinite horizon problems, the
inter-event times are bounded from below by some positive
δ.

Lemma V.9. For all T > 0, ∃ρ > 0 such that supt ‖d(t)‖ < ρ
implies there will be no triggering.

Proof: Note that, for all t ≤ T ,

‖e(t)‖ ≤ ρ
∫ T

0

‖Φ(T, s)− Φ̃(T, s)‖ds.

Therefore, for all ρ ≤ ε∫ T
0
‖Φ(T,s)−Φ̃(T,s)‖ds , supt ‖e(t)‖ ≤ ε

and hence there will be no triggering.
Therefore, for the trivial case d(t) ≡ 0, there will be no

triggering and moreover, e(t) ≡ 0. This shows the well known
fact that for a deterministic system, any feedback law can be
realized with the only information of the initial state.

To summarize, we have proved that for any time invariant
controllable linear system, any linear feedback can be replaced
by an event-triggered feedback while satisfying the constraint
supt ‖e(t)‖ ≤ ε for any ε > 0.

VI. INFINITE HORIZON DESIGN PROBLEM

In this section, we visit the optimal (E , C) design problem
for the infinite horizon problem as presented in Problem III.2.

From Section IV, we notice that the controller synthesis does
not depend on the horizon [0, T ], and neither does it depend
on the cost function. Rather, the design is aimed to satisfy the
constraint ‖e(t)‖ ≤ ε for all t. Thus, for an infinite horizon
problem, the optimal C will have the same structure. One can
formally prove this statement by repeating the analysis done
in Section IV, however, we do not present the analysis here to
maintain brevity.

In order generate the optimal E , let us construct the equiv-
alent problem as it was done for the finite horizon problem.

Problem VI.1. For any given ε > 0,

inf
E,C
J2,T (C, E) (32)

where

J2,T (C, E) = sup
d(·)∈D

{
N(T )∑
i=1

e−ti + sup
s∈[0,T ]

cε(‖e(s)‖)}.

If E∗T is the solution of the above problem then E∗∞ =
lim supT→∞ E∗T .



11

For any finite horizon [0, T ], the optimal number of trigger-
ing instances {t∗1, t∗2, · · · , t∗l } depends on the horizon T . Let
us formally denote

T (T ) = {t∗1(T ), t∗2(T ), · · · , t∗N(T )(T )}. (33)

With slight abuse of notation, by lim supT→∞ E∗T , we basically
want to compute T (∞) = lim supT→∞ T (T ); and then we
want to characterize E∗∞ by T (∞). In general, for an infinite
horizon problem, lim supT→∞N(T ) converges to infinity
in (33). However, if lim supT→∞N(T ) is countable then
lim supT→∞

∑N(T )
i=1 e−ti is finite. On the other hand, if the

triggering strategy forms a continuum of triggering instances
(i.e. Zeno behavior), then lim supT→∞

∑N(T )
i=1 e−ti = ∞.

Therefore, the optimal set of triggering instances found from
this formulation excludes Zeno behavior, but at the same time
it allows for countable number of triggerings which are desired
for an infinite horizon problem.

Proposition VI.2. Problem III.2 is equivalent to Problem VI.1.

The proof of this proposition is very similar to the proof of
Proposition V.3 and hence we omit it.

Let us denote a value function for the infinite horizon
problem for any arbitrary interval [0, T ] as

VT (t, e) = inf
E∈S(t)

sup
d(·)∈D

{ |E|∑
i=1

e−ti + sup
s∈[t,T ]

cε(‖e(s)‖)
}
,

VT (T, e) = 0, (34)

and we are interested in lim supT→∞ VT (0, 0).
Let t1 > t be the first element of S(t), then by dynamic

programming principle,

VT (t, e) = inf
t1≥t
{1t1<T e−t1 + sup

d(·)∈D
sup

s∈[t,t1]

cε(‖e(s)‖)

+ VT (t1, 0)} (35)

Clearly, in this case as well, for all s > t we have

VT (t, 0) ≥ VT (s, 0).

Let us define:

t∗1(t) = inf
s∈[t,T ]

{
s ≥ t | sup

[t,s]

‖e(r)‖ = ε
}
.

Therefore, by the same argument as for the finite horizon
case,

VT (t, e) =

{
e−t

∗
1(t) + VT (t∗1(t), 0), t∗1(t) ≤ T,

0, t∗1(t) = +∞.
(36)

Thus, the triggering strategy is exactly same as what we
had before and the strategy does not depend on the hori-
zon T , although the output of the strategy (i.e. number of
triggerings) varies with T . One property to note here is, if
{t1, · · · , tN(T1)} are the optimal time instances for triggering
for a horizon [0, T1], and {s1, · · · , sN(T2)} are the optimal

time instances for triggering for a horizon [0, T2] (T2 > T1),
then N(T2) ≥ N(T1) and si = ti for all 1 ≤ i ≤ N(T1). This
is nothing but the optimality principle.

From (36), one can obtain

V∞(t, e) , lim sup
T→∞

VT (t, e) = e−t
∗
1(t) + V∞(t∗1(t), 0).

The value function VT (t, e) depends on T ; and its value is
non-decreasing as T increases. The following theorem ensures
that for the optimal E∗∞, the value function V∞(t, e) attains a
finite value for all t and ‖e‖ ≤ ε.

Theorem VI.3. The optimal value of the asymptotic case
(T →∞) of Problem VI.1 is finite at E∗∞.

Proof: First let us note that for the asymptotic case

V∞(t, e) = lim sup
T→∞

inf
E∈S(t)

sup
d(·)∈D

{
|E|∑
i=1

e−ti + sup
s∈[t,T ]

cε(‖e(s)‖)}

lim sup
T→∞

V∞(T, e) = 0, ∀e (37)

and the optimal value of the asymptotic problem is V∞(0, 0).

Due to Remark V.8, one can show that for the infinite
horizon case also there exists δ > 0 such that the inter-event
times are at least δ apart, i.e. ti+1 − ti > δ for all i.

Therefore, using (37), one can write:

V∞(0, 0) =

k∑
i=1

e−t
∗
i + V∞(t∗k, 0)

where the first k optimal triggering instances are t∗1, t
∗
2, · · · , t∗k.

Using the fact that t∗i+1− t∗i > δ for all i > 0 and t∗1 > δ, one
can obtain kδ < t∗k. Hence,

V∞(0, 0) ≤ e−δ 1− e−kδ

1− e−δ
+ V∞(t∗k, 0).

Thus for any k-th triggering time t∗k,

V∞(0, 0) ≤ e−δ 1− e−t∗k
1− e−δ

+ V∞(t∗k, 0) (38)

Hence taking k → +∞, or equivalently t∗k →∞

V∞(0, 0) ≤ e−δ

1− e−δ
.

Let E∞ be an event-generator such that within some finite
interval [T1, T2], the are N number of generated events. Then,
clearly by the definition of J2,∞ in (32), J2,∞(C, E∞) ≥
Ne−T2 for any controller C. On the other hand, by Theorem
VI.3, we have J∗2,∞ = V∞(0, 0) ≤ e−δ

1−e−δ . Thus, any optimal
event-generating policy would have only finite number of
triggerings within a finite interval. Thus, to summarize, for
an infinite horizon problem, the next triggering time at any
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Fig. 2. The behavior of the closed loop system in shown in red curve and
the blue curve shows the same for event-based system. The orange tube has
the tolerance radius of 0.1.

time t is given by3:

t∗1(t) = inf
s
{s ≥ t| sup

r∈[t,s]

‖e(r)‖ = ε}.

The triggering strategy is not necessarily a periodic strategy
over the infinite horizon.

VII. SIMULATION RESULTS

In this section, we will illustrate our approach using a system
evolving in R2 with the dynamics:[

ẋ1

ẋ2

]
=

[
0 1
−2 0.1

] [
x1

x2

]
+

[
0

0.75

]
u+

[
1
1

]
d.

The designed control is u = −x2. For this simulation, we
used d to be a bounded valued disturbance with values in
[−0.5, 0.5]. The ε for this simulation was chosen to be 0.1, and
we use ‖ · ‖2 norm, i.e., the requirement is ‖e(t)‖2 ≤ ε = 0.1
for all t.

In Figure 2, we show the trajectory of the closed loop
system, the trajectory of the optimal event-based system, and
the orange tube has a radius of ε = 0.1. One may visualize
that the phase-plot ( projection of the plot in the x1x2 plane)
is spiral due to the chosen parameters

In Figure 3, we show the optimal control u(t), ψ(t) and
the triggering instances. For the whole time interval of [0, 35],
only 4 (except the one at time 0) triggerings were initiated.

To see the effect of ψ, we performed a simulation under
same disturbance and selected ψ = 0. The state trajectory and
the corresponding error norm is presented in Figures 4 and 5
respectively.

These figures support the fact that ψ plays a crucial role in
ensuring the performance of the system.

VIII. DISCUSSION

A. A note on the choice of δ in Theorem IV.4
In the analysis, we have theoretically shown that under the

controllability assumption on (A,B), the effect of the residual

3This could be formally proved by following the steps similar to the ones
used to prove Theorem V.4

Fig. 3. Top: control u(t) = −KΦ̃(t, θ(t))x(θ(t)) +ψ(t, e(θ(t))), Middle:
ψ(t, e(θ(t))) vs t, Down: Optimal triggering instances.

Fig. 4. The state trajectories: closed loop system, optimal event-based system
with information sharing I = {x(ti), e(ti)}i=1,2,..., and event-based system
with information I = {x(ti)}i=1,2,...
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Fig. 5. The norm of the error for event based systems under two different
situations: using ψ(t) (red) and without ψ(t) (yellow).

error e(θ(t)) can be nullified in arbitrary small time and hence
for all t > θ(t), e(t) does not depend on e(θ(t)). However, as
the permitted time (δ in Theorem IV.4) to mitigate the effect
of e(θ(t)) gets smaller, the amplitude of the corrective control
gets larger; and in the limit δ → 0, the corrective control
component becomes a Dirac-delta distribution. In practice,
the system might not be able to handle such an ‘impulsive’
nature of the controller. Therefore, in this section, we make
an attempt to study the same problem while allowing the
controller to have a certain positive amount of time to mitigate
this error. The purpose of this subsection is primarily on the
implementation aspect of such a controller, where we aim
to show that even without using an ‘impulsive’ controller,
the requirement ‖e(t)‖ ≤ ε can still be achieved by slightly
changing the threshold for the event-triggering strategy. In
order to do so, we assume that the disturbance is bounded
supt ‖d(t)‖ ≤ D. The study of the problem with arbitrary
d(·) is beyond the scope of this paper.

The performance of the (heuristic) method that we are going
to propose, depends on a parameter α ∈ (0.5, 1).

Firstly, let us note that, by choosing the optimal linear
controller we have ((45),(47))

e(t) = G(t, I) +

∫ t

θ(t)

Φ̃(t, s)d1(s)ds

Ġ = AG+Ba

G(θ(t), I) = e(θ(t))

where a(t) can be chosen freely.
Since (A,B) is a controllable pair, by suitable pole place-

ment ‖G(t, I)‖ ≤ e−λ(t−θ(t))e(θ(t)) can be achieved for any
λ > 0. Let the event-generator E triggers an event when
‖e(t)‖ = αε where α ∈ (0.5, 1). Let us also note that,

h(t) =

∫ t

θ(t)

Φ̃(t, s)d1(s)ds =

∫ t

θ(t)

(Φ(t, s)− Φ̃(t, s))d(s)ds

is a differentiable function with h(θ(t)) = 0 and h′+(θ(t)) =
04.

4h′+ is the upper-Dini-derivative of h

Thus, we can define

D1 = sup
s
{s ≥ θ(t) | sup

r∈[θ(t),s]

‖h(r)‖ ≤ (1− α)ε}.

Due to the above mentioned properties of h(t), D1 − θ(t) is
strictly positive, in fact, D1 − θ(t) > (1−α)ε

Lh
where Lh is the

Lipschitz constant of h.
Therefore, for all t ∈ [θ(t), D1], h(t) ≤ (1 − α)ε and we

have the following lemma:

Lemma VIII.1. If (A,B) is a controllable pair, then for all
λ > 0 there exists control such that for all t ∈ [θ(t), D1]

‖G(t, I)‖ ≤ ‖G(θ(t), I)‖e−λ(t−θ(t))

G(D1, I) = 0.

Moreover, the controller that achieves the above requirement,
produces control signal of bounded value.

These ensure ∀t ≤ D1, ‖e(t)‖ ≤ ε and at time t = D1,

‖e(D1)‖ ≤
∫ D1

θ(t)

‖Φ̃(t, s)BKd1(s)‖ds = (1− α)ε < αε

Thus, the inter-triggering intervals are at least of (1−α)ε/Lh
duration and hence the controller has (1− α)ε/Lh amount of
time to mitigate the effect of residual error e(θ(t)).

B. An approximate solution for optimal control problems

Let us consider the following optimal control problem:

Problem VIII.2. Find an event-generator and optimal con-
troller pair (E , C) such that:

min
E,C

sup
d(·)∈D

[
N(T ) + α

∫ T

0

l(s, x(s), û(s))ds

]
(39)

s.t. ẋ = Ax+Bû+ d (40)

where û is an event-based control (linear in measurements)
input generated by (E , C), and α > 0.

Solving this problem even for quadratic l(s, x, u) is not
trivial (as compared to the well celebrated LQ problems) due
to the event-based structure of the controller. Such an opti-
mization problem is common when there is a communication
cost associated with the transmission of the measurements.
However, using our approach one can solve this problem
approximately. In the first stage, let us solve Problem VIII.3
to get a linear feedback controller.

Problem VIII.3.

min
u

sup
d(·)∈D

[∫ T

0

l(s, x(s), u(s))ds

]
(41)

s.t. ẋ = Ax+Bu+ d (42)

where u is in the space of linear feedback controllers.

Let u = Kx be the optimal solution of Problem VIII.3.
In the second stage the linear feedback control obtained by
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solving Problem VIII.3 is approximated with an event-based
control û that solves Problem III.1.

Let us denote u∗(t) and x∗(t) to be the optimal control and
the corresponding optimal trajectory for the Problem VIII.3.
If û(t) and x(t) are the optimal approximation of u∗ and x∗
by solving Problem III.1, then ‖x∗(t) − x(t)‖ ≤ ε, and one
can also show that ‖u∗(t)− û(t)‖ ≤ Lu(t)ε for some function
Lu(t) > 0. Thus,∫ T

0

l(s, x, û)ds =

∫ T

0

l(s, u∗, x∗)ds+O(ε).

Therefore, the event-trigger controller generated in this two-
step approach produces a cost which is O(ε) away from the
optimal cost of the continuous feedback system. Taking ε→ 0,
we will have

∫ T
0
l(s, x, û)ds →

∫ T
0
l(s, u∗, x∗)ds, however

N(T ) (the number of triggerings) will be higher as ε→ 0.
The study of this optimal control problem is not the aim

of this paper, and this section is meant to demonstrate the
applicability of this approach beyond the problem described
in Problem III.1–VI.1.

IX. CONCLUSION

In this work, we propose an optimal controller and event
generator pair to replace a linear continuous feedback con-
troller with an event-triggered one. The deviation in trajec-
tories between the continuous feedback system and the event-
triggered system was considered to be a metric of performance.
The analysis shows that for any given performance level ε > 0,
there always exists a pair of event-triggered controller and
event generator provided the system is controllable.

We show that the optimal controller is linear with respect
to the latest information received. The controller also exhibits
certainty-equivalence type principle. Moreover, the presence
of corrective component ψ(t, e(θ(t))) is the crucial part of the
controller when the closed-loop system is not Hurwitz. It is the
ψ(·, ·) which ensures that the deviation in state trajectory does
not grow unboundedly for a non-Hurwitz system. Without this
component in the controller, the constraint ‖e(t)‖ ≤ ε cannot
be guaranteed (as illustrated in the simulation results).

The optimal event generator follows a threshold strategy
where the threshold is the given performance level ε. The event
generator tracks the error e(t) and transmits the state and error
measurements to the controller whenever ‖e(t)‖ reaches the
threshold ε. Such a threshold based policy is ubiquitous and
easily implementable. Further, such a threshold strategy does
not exhibit Zeno behavior.

X. APPENDIX

A. Proof of Theorem IV.6

Let us consider the general form of the controller to be:

û(t) = K
(
t, {x0} ∪ {x(ti)}N(t)

i=1 ∪ {e(ti)}
N(t)
i=1

)
(43)

To maintain brevity we will use K(t, I(t)) instead of
K
(
t, {x0} ∪ {x(ti)}N(t)

i=1 ∪ {e(ti)}
N(t)
i=1

)
where I(t) is the

information related to the state and error measurements which
are available to controller at time t.

Thus,

ẋ = Ax+BK(t, I(t)) + d (44)

which leads to (using the fact that between θ(t) and t, no
information arrives from E to C, i.e., I(t) = I(s) = I(θ(t)) =
I (say) for all s ∈ [θ(t), t])

x(t) =Φ(t, θ(t))x(θ(t)) +

∫ t

θ(t)

Φ(t, s)(BK(s, I) + d(s))ds,

x(t) =F (t, I) +

∫ t

θ(t)

Φ(t, s)d(s)ds,

where F (t, I) = Φ(t, θ(t))x(θ(t)) +
∫ t
θ(t)

Φ(t, s)BK(s, I)ds

Therefore, the error signal e = x − xc can be represented
as

ė =Ãe+BKx+BK(t, I),

ė =Ãe+BKF (t, I) +BK(t, I) +BK

∫ t

θ(t)

Φ(t, s)d(s)ds.

By denoting d1(t) = BK
∫ t
θ(t)

Φ(t, s)d(s)ds, we can write
e(t) as

e(t) = G(t, I) +

∫ t

θ(t)

Φ̃(t, s)d1(s)ds, (45)

where

G(t, I) =

∫ t

θ(t)

Φ̃(t, s)B(KF (s, I) +K(s, I))ds

+ Φ̃(t, θ(t))e(θ(t)).

Therefore,

sup
d∈D
‖e(t)‖ = sup

d∈D
(‖G(t, I)‖+ ‖

∫ t

θ(t)

Φ̃(t, s)d1(s)ds‖)

= sup
d∈D
‖G(t, I)‖+ sup

d∈D
‖
∫ t

θ(t)

Φ̃(t, s)d1(s)ds‖.

All the equalities hold in the above derivation since the
disturbance could be any function in L1([0, T ]). In fact, one
can notice that G(t, I) depends on the realization of the distur-
bance until time θ(t) and the other term

∫ t
θ(t)

Φ̃(t, s)d1(s)ds

depends on the realization of noise after time θ(t).

Therefore, in order to keep supd∈D ‖e(t)‖ as low as
possible, controller C is required to minimize ‖G(t, I)‖
–by properly selecting K(t, I)– since the other term
(‖
∫ t
θ(t)

Φ̃(t, s)d1(s)ds‖) is totally determined by the distur-
bance and hence it is left uncontrolled by C.
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To further simplify G(t, I), we first note that∫ t

θ(t)

Φ̃(t, s)BKF (s, I)ds

=

∫ t

θ(t)

Φ̃(t, s)BKΦ(s, θ(t))x(θ(t))

+

∫ t

θ(t)

Φ̃(t, s)BK

∫ s

θ(t)

Φ(s, r)BK(r, I)drds

=

∫ t

θ(t)

d

ds
(Φ̃(t, s)Φ(s, θ(t)))x(θ(t))

+

∫ t

r=θ(t)

[ ∫ t

s=r

Φ̃(t, s)BKΦ(s, r)ds
]
BK(r, I)dr

=
(
Φ(t, θ(t))− Φ̃(t, θ(t))

)
x(θ(t))

+

∫ t

θ(t)

(
Φ(t, r)− Φ̃(t, r)

)
BK(r, I)dr

Therefore,

G(t, I) =Φ̃(t, θ(t))e(θ(t)) +
(
Φ(t, θ(t))− Φ̃(t, θ(t))

)
x(θ(t))

+

∫ t

θ(t)

Φ(t, r)BK(r, I)dr (46)

Looking into the expression of G(t, I) in (46), one can guess
that the K(t, I) which aims to minimize ‖G(t, I)‖, is only a
function of x(θ(t)) and e(θ(t)) and moreover, K(t, I) has to
be linear with respect to x(θ(t)) and e(θ(t)).

Now, we want to check whether there exist matrix valued
functions M(t) and L(t) such that K(t, I) = M(t)e(θ(t)) +
L(t)x(θ(t)) can make ‖G(t, I)‖ = 0 (or arbitrary small).

Let us take L(t) = −KΦ̃(t, θ(t)), and this leads to

G(t, I) =
(

Φ̃(t, θ(t)) +

∫ t

θ(t)

Φ(t, r)BM(r)dr
)
e(θ(t)).

This is a similar situation as we dealt with in Theorem IV.4.
Under the assumption that (A,B) is a controllable pair, we can
choose M(t) such a way that G(t, I) converges to zero expo-
nentially fast with the decay rate as fast as desired. Moreover
as presented in Theorem IV.4, we can make G(t, I) = 0 for
all t > θ(t). To see this choose M(t) = KΦ̃(t, θ(t)) +M1(t),
and thus

G(t, I) =
(

Φ(t, θ(t)) +

∫ t

θ(t)

Φ(t, r)BM1(r)dr
)
e(θ(t))

=G(t)e(θ(t)).

where

Ġ = AG +BM1 (47)
G(θ(t)) = I

where I is the identity matrix. Since (A,B) is controllable,
we have that the Grammian

W (δ) =

∫ θ(t)+δ

θ(t)

Φ(θ(t), s)BB′Φ(θ(t), s)′ds

is positive definite for all δ > 0. Therefore, by selecting
M1(t) = −1t≤θ(t)+δB

′Φ(θ(t), t)′W (δ)−1 for all t ≥ θ(t),
one can verify that G(t) = 0 for all t ≥ θ(t) + δ. Since δ can
be made arbitrarily small, one can conclude G(t) = 0 for all
t > θ(t); and hence G(t, I) = 0 for all t > θ(t)

Thus, K(t, I) is linear with respect to the elements of I,
and furthermore, it only depends on the latest measurements.
Therefore, as a result of using such K(t, I), we can conclude
that ∀t > θ(t)

e(t) =

∫ t

θ(t)

Φ̃(t, s)d1(s)ds.
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[30] C. Stöcker and J. Lunze, “Event-based control of nonlinear systems:
An input-output linearization approach,” in Decision and Control and
European Control Conference (CDC-ECC), 2011 50th IEEE Conference
on. IEEE, 2011, pp. 2541–2546.

[31] D. Maity and J. S. Baras, “Event based control for control affine
nonlinear systems: A lyapunov function based approach,” in Decision
and Control (CDC), 2015 IEEE 54th Annual Conference on. IEEE,
2015, pp. 3767–3772.

[32] X. Wang and M. D. Lemmon, “Event-triggering in distributed net-
worked systems with data dropouts and delays.” in HSCC, vol. 9.
Springer, 2009, pp. 366–380.

[33] S. Wright and J. Nocedal, “Numerical optimization,” Springer Science,
vol. 35, no. 67-68, p. 7, 1999.

Dipankar Maity received the B.E. degree in Elec-
tronics and Telecommunication Engineering from
Jadavpur University, India in 2013, and the Ph.D
degree in Electrical and Computer Engineering from
University of Maryland College Park, USA in 2018.
During his Ph.D, he was a visiting scholar at the
Technische Universität München (TUM) Germany,
and the Royal Institute of Technology (KTH) Swe-
den. Currently, he is a Postdoctoral Fellow in Geor-
gia Institute of Technology.

His research interests include temporal logic based
controller synthesis, Control with logical constraints, control with commu-
nication constraints, intermittent feedback control, event-triggered control,
stochastic games, and integration of these ideas in the context of cyber-
physical-systems.

John S. Baras received the Diploma in Electri-
cal and Mechanical Engineering from the National
Technical University of Athens, Athens, Greece, in
1970, and the M.S. and Ph.D. degrees in Applied
Mathematics from Harvard University, Cambridge,
MA, USA, in 1971 and 1973, respectively. Since
1973, he has been with the Department of Electrical
and Computer Engineering, University of Maryland
at College Park, MD, USA, where he is currently a
Distinguished University Professor. He is also a Fac-
ulty member of the Applied Mathematics, Statistics

and Scientific Computation Program, and Affiliate Professor in the Fischell
Department of Bioengineering, the Department of Mechanical Engineering,
and the Department of Decision, Operations and Information Technologies,
Robert H. Smith School of Business. Since 2013, he has been Guest Professor
at the School of Electrical Engineering of the Royal Institute of Technology
(KTH), Sweden. From 1985 to 1991, he was the Founding Director of the
Institute for Systems Research (ISR) (one of the first six National Science
Foundation Engineering Research Centers). In 1990, he was appointed to the
endowed Lockheed Martin Chair in Systems Engineering. Since 1992, he has
been the Director of the Maryland Center for Hybrid Networks (HYNET),
which he co-founded.

He is an IEEE Life Fellow, SIAM Fellow, AAAS Fellow, NAI Fellow,
IFAC Fellow, AMS Fellow, AIAA Associate Fellow, Member of the National
Academy of Inventors (NAI) and a Foreign Member of the Royal Swedish
Academy of Engineering Sciences (IVA). Major honors and awards include
the 1980 George Axelby Award from the IEEE Control Systems Society, the
2006 Leonard Abraham Prize from the IEEE Communications Society, the
2014 Tage Erlander Guest Professorship from the Swedish Research Council,
and a three year (2014-2017) Senior Hans Fischer Fellowship from the Institute
for Advanced Study of the Technical University of Munich, Germany. In
2016 he was inducted in the University of Maryland A. J. Clark School of
Engineering Innovation Hall of Fame. He was awarded the 2017 Institute
for Electrical and Electronics Engineers (IEEE) Simon Ramo Medal, the
2017 American Automatic Control Council (AACC) Richard E. Bellman
Control Heritage Award, and the 2018 American Institute for Aeronautics
and Astronautics (AIAA) Aerospace Communications Award. In 2018 he was
awarded a Doctorate Honoris Causa by the National Technical University of
Athens, Greece.

He has educated 87 doctoral students, 116 MS students and has mentored
55 postdoctoral fellows. He has given many plenary and keynote addresses
in major international conferences worldwide. He has been awarded eighteen
patents and has been honored worldwide with many awards as innovator and
leader of economic development.


